_aiEceEOJbniEea~a Device Features Low power 1.8V operation Bluetooth v1.1 and v1.2 specification compliant Small footprint in 96 ball VFBGA LGA and LFBGA packages (6x6mm, 8 x 8mm and 10 x 10mm) Fully qualified Bluetooth component 0.18m CMOS technology Production Information Data Sheet for: BC212015 (USB and UART version) Full speed Bluetooth operation with full piconet support August 2006 Support for 8Mbit external flash Minimum external components General Description Applications BlueCore2-External is a single chip radio and baseband IC for Bluetooth 2.4GHz systems. It is implemented in 0.18m CMOS technology. When used with external flash containing the CSR Bluetooth software stack, it provides a fully compliant Bluetooth system for data and voice communications. PCs Cellular Handsets Cordless Headsets Personal Digital Assistants (PDAs) Computer Accessories (Compact flash Cards, PCMCIA Cards, SD Cards and USB Dongles) Mice, Keyboards and Joysticks Digital Cameras and Camcorders BlueCore2-External has been designed to reduce the number of external RF components required, which ensures module production costs are minimised. Up to 8Mbit FLASH ROM SPI RAM The device incorporates auto calibration and built-in self-test routines to simplify development, type approval and production test. All hardware and device firmware is fully compliant with the Bluetooth specification v1.1 and v1.2. UART/USB RF IN 2.4 GHz Radio DSP RF OUT I/O PIO MCU PCM XTAL BlueCore2-External Block Diagram BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 1 of 100 _aiEceETMOJbniEea~a Product Data Sheet Single Chip Bluetooth(R) System Contents Contents Status of Information ............................................................................................................................................ 6 Key Features .................................................................................................................................................. 7 2 Device Pinout Diagram .................................................................................................................................. 8 3 Device Terminal Functions ........................................................................................................................... 9 4 Electrical Characteristics ............................................................................................................................ 14 5 Radio Characteristics .................................................................................................................................. 19 6 Device Diagram ............................................................................................................................................ 24 7 Description of Functional Blocks ............................................................................................................... 25 7.1 RF Receiver........................................................................................................................................... 25 7.1.1 Low Noise Amplifier ................................................................................................................... 25 7.1.2 Analogue to Digital Converter .................................................................................................... 25 7.2 RF Transmitter....................................................................................................................................... 25 7.2.1 IQ Modulator .............................................................................................................................. 25 7.2.2 Power Amplifier .......................................................................................................................... 25 7.3 RF Synthesiser ...................................................................................................................................... 25 8 7.4 Baseband and Logic .............................................................................................................................. 25 7.4.1 Memory Management Unit ......................................................................................................... 25 7.4.2 Burst Mode Controller ................................................................................................................ 26 7.4.3 Physical Layer Hardware Engine DSP....................................................................................... 26 7.4.4 RAM ........................................................................................................................................... 26 7.4.5 External Memory Driver ............................................................................................................. 26 7.4.6 USB............................................................................................................................................ 26 7.4.7 Synchronous Serial Interface ..................................................................................................... 26 7.4.8 UART ......................................................................................................................................... 26 7.4.9 Audio PCM Interface .................................................................................................................. 27 7.5 Microcontroller ....................................................................................................................................... 27 7.5.1 Programmable I/O...................................................................................................................... 27 CSR Bluetooth Software Stacks ................................................................................................................. 28 8.1 BlueCore HCI Stack .............................................................................................................................. 28 8.1.1 Key Features of the HCI Stack................................................................................................... 29 8.2 BlueCore RFCOMM Stack..................................................................................................................... 31 8.2.1 Key Features of the BlueCore2-External RFCOMM Stack......................................................... 31 8.3 BlueCore Virtual Machine Stack ............................................................................................................ 32 8.4 BlueCore HID Stack .............................................................................................................................. 33 8.5 Host-Side Software................................................................................................................................ 34 8.6 Device Firmware Upgrade ..................................................................................................................... 34 8.7 Additional Software for Other Embedded Applications .......................................................................... 34 8.8 CSR Development Systems .................................................................................................................. 34 9 Device Terminal Descriptions..................................................................................................................... 35 9.1 RF Ports ................................................................................................................................................ 35 9.1.1 Receiver Input (RF_IN) .............................................................................................................. 36 9.1.2 TX_A and TX_B ......................................................................................................................... 36 9.1.3 Transmit RF Power Control for Class 1 Applications (TX_PWR) ............................................... 37 9.1.4 Transmit and Receive Port Impedances for 8 x 8 x 1.0mm package ......................................... 39 9.1.5 Transmit and Receive Port Impedances for 6 x6 x 1.0mm Package.......................................... 44 9.2 Loop Filter.............................................................................................................................................. 47 9.3 Crystal Oscillator/Reference Clock Input (XTAL_IN) ............................................................................. 47 9.3.1 External Mode ............................................................................................................................ 48 9.3.2 Input Frequencies ...................................................................................................................... 48 9.3.3 XTAL Mode ................................................................................................................................ 49 9.3.4 Load Capacitance ...................................................................................................................... 50 9.3.5 Frequency Trim .......................................................................................................................... 50 BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 2 of 100 _aiEceETMOJbniEea~a Product Data Sheet 1 Contents 9.3.6 Transconductance Driver Model ................................................................................................ 51 9.3.7 Negative Resistance Model ....................................................................................................... 51 9.4 Off-Chip Program Memory..................................................................................................................... 56 9.4.1 Minimum Flash Specification ..................................................................................................... 56 9.4.2 Common Flash Interface............................................................................................................ 57 9.4.3 Memory Timing .......................................................................................................................... 58 9.5 UART Interface...................................................................................................................................... 60 9.10 Power Supplies...................................................................................................................................... 77 10 Schematics ................................................................................................................................................... 79 10.1 VFBGA, LGA and LFBGA Package....................................................................................................... 79 11 Package Dimensions ................................................................................................................................... 82 11.1 8 x 8 and 6 x 6 VFBGA Packages ......................................................................................................... 82 11.2 6 x 6 LGA Package................................................................................................................................ 83 11.3 10 x 10 LFBGA Package ....................................................................................................................... 84 12 Solder Profiles.............................................................................................................................................. 85 12.1 Solder Re-flow Profile for Devices with Tin/Lead Solder Balls............................................................... 85 12.2 Solder Reflow Profile for Devices with Lead-Free Solder Balls ............................................................. 86 13 Product Reliability Tests ............................................................................................................................. 87 14 Product Reliability Tests for BlueCore Automotive .................................................................................. 88 15 Tape and Reel Information .......................................................................................................................... 89 15.1 Tape Orientation and Dimensions ......................................................................................................... 89 15.2 Reel Information .................................................................................................................................... 91 15.3 Dry Pack Information ............................................................................................................................. 91 15.3.1 Baking Conditions ...................................................................................................................... 92 15.3.2 Product Information.................................................................................................................... 93 16 Ordering Information ................................................................................................................................... 94 17 Contact Information ..................................................................................................................................... 95 18 Document References ................................................................................................................................. 96 Acronyms and Definitions.................................................................................................................................. 97 BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 3 of 100 _aiEceETMOJbniEea~a Product Data Sheet 9.6 USB Interface ........................................................................................................................................ 61 9.6.1 USB Data Connections .............................................................................................................. 62 9.6.2 USB Pull-up Resistor ................................................................................................................. 62 9.6.3 Power Supply ............................................................................................................................. 62 9.6.4 Self-Powered Mode.................................................................................................................... 62 9.6.5 Bus-Powered Mode.................................................................................................................... 62 9.6.6 Suspend Current ........................................................................................................................ 63 9.6.7 Detach and Wake_Up Signalling................................................................................................ 64 9.6.8 USB Driver ................................................................................................................................. 64 9.6.9 USB 1.1 Compliance.................................................................................................................. 64 9.6.10 USB v2.0 Compatibility .............................................................................................................. 65 9.7 Serial Peripheral Interface ..................................................................................................................... 65 9.7.1 Instruction Cycle......................................................................................................................... 65 9.7.2 Writing to BlueCore2-External.................................................................................................... 65 9.7.3 Reading from BlueCore2-External ............................................................................................. 66 9.7.4 Multi Slave Operation................................................................................................................. 66 9.8 PCM Interface........................................................................................................................................ 66 9.8.1 PCM Interface Master/Slave ...................................................................................................... 68 9.8.2 Long Frame Sync....................................................................................................................... 69 9.8.3 Short Frame Sync ...................................................................................................................... 69 9.8.4 Multi-Slot Operation ................................................................................................................... 70 9.8.5 GCI Interface.............................................................................................................................. 70 9.8.6 Slots and Sample Formats ......................................................................................................... 71 9.8.7 Additional Features .................................................................................................................... 71 9.8.8 PCM Timing Information ............................................................................................................ 72 9.8.9 PCM Configuration PS Key ........................................................................................................ 75 9.9 PIO Interface ......................................................................................................................................... 76 Contents Record of Changes ........................................................................................................................................... 100 List of Figures Figure 2.1: BlueCore2-External Device Pinout Diagram ......................................................................................... 8 Figure 4.1: Current Measurement Circuit .............................................................................................................. 18 Figure 6.1: BlueCore2-External Device Diagram .................................................................................................. 24 Figure 8.1: BlueCore HCI Stack ............................................................................................................................ 28 Figure 8.2: BlueCore RFCOMM Stack .................................................................................................................. 31 Figure 8.3: Virtual Machine Stack ......................................................................................................................... 32 Figure 8.4: HID Stack............................................................................................................................................ 33 Figure 9.2: Single Ended RF Input (Class 1)......................................................................................................... 35 Figure 9.3: Circuit RF_IN ...................................................................................................................................... 36 Figure 9.4: Circuit TX/RX_A and TX/RX_B ........................................................................................................... 36 Figure 9.5: Power Amplifier Configuration for Class 1 Applications ...................................................................... 37 Figure 9.6: Internal Power Ramping...................................................................................................................... 37 Figure 9.7: TX_A Transmit Mode (Power Level 30) .............................................................................................. 39 Figure 9.8: TX_A Transmit Mode (Power Level 45) .............................................................................................. 39 Figure 9.9: TX_A Transmit Mode (Power Level 63) .............................................................................................. 40 Figure 9.10: TX_B Transmit Mode (Power Level 30) ............................................................................................ 40 Figure 9.11: TX_B Transmit Mode (Power Level 45) ............................................................................................ 41 Figure 9.12: TX_B Transmit Mode (Power Level 63) ............................................................................................ 41 Figure 9.13: TX_A in Receive Mode ..................................................................................................................... 42 Figure 9.14: TX_B in Receive Mode ..................................................................................................................... 42 Figure 9.15: Unbalanced RF Input ........................................................................................................................ 43 Figure 9.16: TX_A Transmit Mode (Power Level 50) ............................................................................................ 44 Figure 9.17: TX_A Transmit Mode (Power Level 63) ............................................................................................ 44 Figure 9.18: TX_B Transmit Mode (Power Level 50) ............................................................................................ 45 Figure 9.19: TX_B Transmit Mode (Power Level 63) ............................................................................................ 45 Figure 9.20: TX_A in Receive Mode ..................................................................................................................... 46 Figure 9.21: TX_B in Receive Mode ..................................................................................................................... 46 Figure 9.22: Unbalanced RF Inputt ....................................................................................................................... 47 Figure 9.23: Recommended Component Values for External Loop_Filter ............................................................ 47 Figure 9.24: BlueCore2-External Crystal Driver Circuit ......................................................................................... 49 Figure 9.25: Crystal Equivalent Circuit .................................................................................................................. 49 Figure 9.26: Crystal Load Capacitance and Series Resistance Limits with Crystal Frequency............................. 53 Figure 9.27: Crystal Driver Transconductance vs. Driver Level Register Setting .................................................. 54 Figure 9.28: Crystal Driver Negative Resistance as a Function of Drive Level Setting ......................................... 55 Figure 9.29 : Memory Write Cycle......................................................................................................................... 58 Figure 9.30: Memory Read Cycle.......................................................................................................................... 59 Figure 9.31: Universal Asynchronous Receiver .................................................................................................... 60 Figure 9.32: Break Signal...................................................................................................................................... 61 Figure 9.33: Connections to BlueCore2-External for Self-Powered Mode ............................................................ 62 Figure 9.34: Connections to BlueCore2-External for Bus-Powered Mode ............................................................ 63 Figure 9.35: USB_DETACH and USB_WAKE_UP Signal .................................................................................... 64 Figure 9.36: Write Operation ................................................................................................................................. 65 Figure 9.37: Read Operation................................................................................................................................. 66 Figure 9.38: BlueCore2-External as PCM Interface Master .................................................................................. 68 BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 4 of 100 _aiEceETMOJbniEea~a Product Data Sheet Figure 9.1: Differential RF Input (Class 2)............................................................................................................. 35 Contents Figure 9.39: BlueCore2-External as PCM Interface Slave .................................................................................... 68 Figure 9.40: Long Frame Sync (Shown with 8-bit Companded Sample)............................................................... 69 Figure 9.41: Short Frame Sync (Shown with 16 bit Sample)................................................................................. 69 Figure 9.42: Multi slot Operation with Two Slots and 8-bit Companded Samples ................................................. 70 Figure 9.43: GCI Interface..................................................................................................................................... 70 Figure 9.44: 16 bit Slot Length and Sample Formats ............................................................................................ 71 Figure 9.45: PCM Master Timing .......................................................................................................................... 73 Figure 9.46: PCM Slave Timing ............................................................................................................................ 74 Figure 10.1: Circuit Used for Data Book Characterisation..................................................................................... 79 Figure 10.2: Example Application Circuit .............................................................................................................. 81 Figure 11.2: BlueCore2-External LGA Package Dimensions ................................................................................ 83 Figure 11.3: BlueCore2-External LFBGA Package Dimensions ........................................................................... 84 Figure 12.1: Typical Re-flow Solder Profile ........................................................................................................... 85 Figure 12.2: Typical Lead-Free Re-flow Solder Profile.......................................................................................... 86 Figure 15.1: Tape and Reel Orientation ................................................................................................................ 89 Figure 15.2: Tape Dimensions .............................................................................................................................. 90 Figure 15.3: Reel Dimensions ............................................................................................................................... 91 Figure 15.4: Tape and Reel Packaging................................................................................................................. 92 Figure 15.5: Product Information Labels ............................................................................................................... 93 List of Tables Table 9.1: TXRX_PIO_CONTROL Values ............................................................................................................ 38 Table 9.2: Digital Clock Signals............................................................................................................................. 48 Table 9.3: Crystal Specifications ........................................................................................................................... 51 Table 9.4: PS Key Values for PS KEY_ANA_FREQ ............................................................................................. 52 Table 9.5: Flash Device Hardware Requirements................................................................................................. 56 Table 9.6: Flash Sector Boundaries ...................................................................................................................... 57 Table 9.7: Common Flash Interface Return Codes ............................................................................................... 57 Table 9.8: Memory Write Cycle ............................................................................................................................. 58 Table 9.9: Memory Read Cycle............................................................................................................................. 59 Table 9.10: Possible UART Settings ..................................................................................................................... 60 Table 9.11: Standard Baud Rates ......................................................................................................................... 61 Table 9.12: USB Interface Component Values ..................................................................................................... 63 Table 9.13: Instruction Cycle for an SPI Transaction ............................................................................................ 65 Table 9.14: PCM Master Timing............................................................................................................................ 72 Table 9.15: PCM Slave Timing.............................................................................................................................. 74 Table 9.16: Setting PCM Configuration Using PSKEY_PCM_CONFIG32 ............................................................ 75 Table 15.1: Reel Dimensions ................................................................................................................................ 91 Table 16.1: BlueCore2-External Standard Package Options ................................................................................ 94 Table 16.2: Additional Software Options ............................................................................................................... 94 BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 5 of 100 _aiEceETMOJbniEea~a Product Data Sheet Figure 11.1: BlueCore2-External VFBGA Package Dimensions ........................................................................... 82 Status of Information Status of Information The status of this Data Sheet is Production Information. CSR Product Data Sheets progress according to the following format: Advance Information: Information for designers concerning a CSR product in development. All values specified are the target values of the design. Minimum and maximum values specified are only given as guidance to the final specification limits and must not be considered as the final values. Pre-Production Information: Final pinout and mechanical dimension specifications. All values specified are the target values of the design. Minimum and maximum values specified are only given as guidance to the final specification limits and must not be considered as the final values. All electrical specifications may be changed by CSR without notice. Production Information: Final Data Sheet including the guaranteed minimum and maximum limits for the electrical specifications. Production Data Sheets supersede all previous document versions. Life Support Policy and Use in Safety-Critical Applications: CSR's products are not authorised for use in life-support or safety-critical applications. Use in such applications is done at the sole discretion of the customer. CSR will not warrant the use of its devices in such applications. Trademarks, Patents and Licenses: BlueCoreTM, BlueLabTM, CasiraTM, CompactSiraTM and MicroSiraTM are trademarks of CSR. Bluetooth(R) and the Bluetooth logos are trademarks owned by Bluetooth SIG, Inc and licensed to CSR. Windows(R), Windows 98TM, Windows 2000TM, Windows XPTM and Windows NTTM are registered trademarks of the Microsoft Corporation. I2CTM is a trademark of Philips Corporation. All other product, service and company names are trademarks, registered trademarks or service marks of their respective owners. The publication of this information does not imply that any license is granted under any patent or other rights owned by CSR. CSR reserves the right to make technical changes to its products as part of its development programme. While every care has been taken to ensure the accuracy of the contents of this document, CSR cannot accept responsibility for any errors. BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 6 of 100 _aiEceETMOJbniEea~a Product Data Sheet All detailed specifications, including pinouts and electrical specifications, may be changed by CSR without notice. Key Features 1 Key Features Radio Baseband and Software Operation with common TX/RX terminals simplifies external matching circuitry and eliminates external antenna switch Extensive built-in self-test minimises production test time No external trimming is required in production Full RF reference designs are available Transmitter External 8Mbit flash for complete system solution and application flexibility 32kbyte on-chip RAM allows full speed Bluetooth data transfer, mixed voice and data, plus full 7 slave piconet operation Dedicated logic for forward error correction, header error control, access code correlation, demodulation, cyclic redundancy check, encryption bitstream generation, whitening and transmit pulse shaping Transcoders for A-law, -law and linear voice from host; A-law, -law and CVSD voice over air Physical Interfaces Up to +6dBm RF transmit power with level control from the on-chip 6-bit DAC over a dynamic range greater than 30dB Supports Class 2 and Class 3 radios without the need for an external power amplifier or TX/RX switch Full speed USB interface supports OHCI and UHCI host interfaces. Compliant with USB v1.1 Supports Class 1 radios with an external power amplifier provided by a power control terminal controlled by an internal 8bit voltage DAC and an external RF TX/RX switch Synchronous bi-directional serial programmable audio interface Optional I2CTM compatible interface UART interface with programmable baud rate up to 1.5Mbaud Bluetooth Stack Running on Internal Microcontroller Receiver Synchronous serial interface up to 4Mbaud Integrated channel filters Digital demodulator for improved sensitivity and co-channel rejection Digitised RSSI available in real time over the HCI interface Fast AGC for enhanced dynamic range Synthesiser CSR's Bluetooth Protocol Stack runs on-chip in a variety of configurations: Standard HCI (UART or USB) Fully embedded to RFCOMM, thus reducing host CPU load Package Options Fully integrated synthesiser; no external VCO varactor diode or resonator Compatible with crystals between 8 and 32MHz (in multiples of 250kHz) or external clock 96-ball VFBGA 8 x 8 x 1.0mm 0.65mm pitch 96-ball VFBGA 6 x 6 x 1.0mm 0.50mm pitch 96-ball LGA 6 x 6 x 0.65mm 0.50mm pitch 96-ball LFBGA 10 x 10 x 1.4mm 0.80mm pitch Auxiliary Features Crystal oscillator with built-in digital trimming Power management includes digital shut down and wake up commands and an integrated low power oscillator for ultra-low Park/Sniff/Hold mode power consumption Device can be used with an external Master oscillator and provides a clock request signal to control external clock source Uncommitted 8-bit ADC and 8-bit DAC are available to application programs BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 7 of 100 _aiEceETMOJbniEea~a Product Data Sheet Device Pinout Diagram 2 Device Pinout Diagram Orientation from top of device 1 2 3 4 5 6 7 8 9 10 11 A _aiEceETMOJbniEea~a Product Data Sheet B C D E F G H J K L Figure 2.1: BlueCore2-External Device Pinout Diagram Notes: Device pinout diagram is the same for: 10 x 10 x 1.4mm LFBGA package (BN) 8 x 8 x 1mm VFBGA package (DN and QN) 6 x 6 x 1mm VFBGA package (EN and RN) 6 x 6 x 0.6mm LGA package (LN) BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 8 of 100 Device Terminal Functions 3 Device Terminal Functions Radio Ball Pad Type Description RF_IN E1 Analogue Single ended receiver input PIO[0]/RXEN C1 Bi-directional with weak internal pull-up/down Control output for external LNA (if fitted) PIO[1]/TXEN C2 Bi-directional with weak internal pull-up/down Control output for external PA Class 1 applications only TX_A G1 Analogue Transmitter output/Switched Receiver input F1 Analogue Complement of TX_A AUX_DAC D2 Analogue Voltage DAC output Synthesiser and Oscillator Ball Pad Type Description XTAL_IN L1 Analogue For crystal or external clock input XTAL_OUT L2 Analogue Drive for crystal LOOP_FILTER J1 Analogue Connection to external PLL loop filter External Memory Port Ball Pad Type Description REB D10 CMOS output, tristate with internal weak pull-up Read enable for external memory (active low) WEB E10 CMOS output, tristate with internal weak pull-up Write enable for external memory (active low) CSB C10 CMOS output, tristate with internal weak pull-up Chip select for external memory (active low) BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 9 of 100 _aiEceETMOJbniEea~a Product Data Sheet TX_B Device Terminal Functions Address Lines Ball Description A[0] A[1] D9 CMOS output, tristate Address line E9 CMOS output, tristate Address line A[2] E11 CMOS output, tristate Address line A[3] F9 CMOS output, tristate Address line A[4] F10 CMOS output, tristate Address line A[5] F11 CMOS output, tristate Address line A[6] G9 CMOS output, tristate Address line A[7] G10 CMOS output, tristate Address line A[8] G11 CMOS output, tristate Address line A[9] H9 CMOS output, tristate Address line A[10] H10 CMOS output, tristate Address line A[11] H11 CMOS output, tristate Address line A[12] J8 CMOS output, tristate Address line A[13] J9 CMOS output, tristate Address line A[14] J10 CMOS output, tristate Address line A[15] J11 CMOS output, tristate Address line A[16] K9 CMOS output, tristate Address line A[17] K10 CMOS output, tristate Address line A[18] K11 CMOS output, tristate Address line Data Bus Ball Pad Type Description D[0] K8 Bi-directional with weak internal pull-down Data line D[1] L9 Bi-directional with weak internal pull-down Data line D[2] L10 Bi-directional with weak internal pull-down Data line D[3] L11 Bi-directional with weak internal pull-down Data line D[4] L8 Bi-directional with weak internal pull-down Data line D[5] J7 Bi-directional with weak internal pull-down Data line D[6] K7 Bi-directional with weak internal pull-down Data line D[7] L7 Bi-directional with weak internal pull-down Data line D[8] J6 Bi-directional with weak internal pull-down Data line D[9] K6 Bi-directional with weak internal pull-down Data line D[10] L6 Bi-directional with weak internal pull-down Data line D[11] J5 Bi-directional with weak internal pull-down Data line D[12] K5 Bi-directional with weak internal pull-down Data line D[13] L5 Bi-directional with weak internal pull-down Data line D[14] J4 Bi-directional with weak internal pull-down Data line D[15] K4 Bi-directional with weak internal pull-down Data line BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 10 of 100 _aiEceETMOJbniEea~a Product Data Sheet Pad Type Device Terminal Functions PCM Interface Ball Description PCM_OUT B9 CMOS output, tristate with internal weak pull-down Synchronous data output PCM_IN B10 CMOS input, with internal weak pull-down Synchronous data input PCM_SYNC B11 Bi-directional with weak internal pull-down Synchronous data SYNC PCM_CLK B8 Bi-directional with weak internal pull-down Synchronous data clock USB and UART Ball Pad Type Description UART_TX C8 CMOS output UART data output active high UART_RX C9 CMOS input with weak internal pull-down UART data input active high UART_RTS B7 CMOS output, tristate with internal pull-up UART request to send active low UART_CTS B6 CMOS input with weak internal pull-down UART clear to send active low USB_D+ (1) (2) A7 Bi-directional USB data plus (1) (2) A6 Bi-directional USB data minus Pad Type Description USB_D- Test and Debug Ball RESET F3 CMOS input with weak internal pull-down Reset if high. Input debounced so must be high for >5ms to cause a reset SPI_CSB A4 CMOS input with weak internal pull-up Chip select for Synchronous Serial Interface active low SPI_CLK B5 CMOS input with weak internal pull-down Serial Peripheral Interface clock SPI_MOSI A5 CMOS input with weak internal pull-down Serial Peripheral Interface data input SPI_MISO B4 CMOS output, tristate with weak internal pull-down Serial Peripheral Interface data output TEST_EN G3 CMOS input with strong internal pull-down For test purposes only (leave unconnected) Notes: (1) USB functions are available on BC212015 only. (2) If unused USB_D+ and USB_D- should be connected to ground BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 11 of 100 _aiEceETMOJbniEea~a Product Data Sheet Pad Type Device Terminal Functions PIO Port(1) Ball Description B3 Bi-directional with programmable weak internal pull-up/down PIO or USB pull-up (via 1.5k resistor to USB_D+) PIO[3]/USB_WAKE_UP/R AM_CSB(2) (3) B2 Bi-directional with programmable weak internal pull-up/down PIO or output goes high to wake up PC when in USB mode or external RAM chip select PIO[4]/USB_ON(2) (3) B1 Bi-directional with programmable weak internal pull-up/down PIO or USB on (input senses when VBUS is high, wakes BlueCore2-External) PIO[5]/USB_DETACH(2) (3) A3 Bi-directional with programmable weak internal pull-up/down PIO line or chip detaches from USB when this input is high PIO[6]/CLK_REQ C3 Bi-directional with programmable weak internal pull-up/down PIO line or clock request output to enable external clock for external clock line PIO[7] E3 Bi-directional with programmable weak internal pull-up/down Programmable input/output line PIO[8] D3 Bi-directional with programmable weak internal pull-up/down Programmable input/output line PIO[9] C4 Bi-directional with programmable weak internal pull-up/down Programmable input/output line PIO[10] C5 Bi-directional with programmable weak internal pull-up/down Programmable input/output line PIO[11] C6 Bi-directional with programmable weak internal pull-up/down Programmable input/output line AIO[0] K3 Bi-directional Programmable input/output line(4) AIO[1] L4 Bi-directional Programmable input/output line(4) AIO[2] J3 Bi-directional Programmable input/output line(4) PIO[2]/ (2) (3) USB_PULL_UP Notes: (1) All PIOs are configured as inputs with weak pull-downs at reset. (2) USB functions are available on BC212015 only. (3) USB functions can be software mapped to any PIO terminal. (4) Unused AIO pins may be left unconnected BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 12 of 100 _aiEceETMOJbniEea~a Product Data Sheet Pad Type Device Terminal Functions Power Supplies and Control VDD_RADIO Ball D1 H3 Pad Type Description VDD Positive supply connection for RF circuitry H1 VDD Positive supply for VCO and synthesiser circuitry VDD_ANA K1 VDD Positive supply for analogue circuitry VDD_CORE A8 VDD Positive supply for internal digital circuitry VDD_PIO A1 VDD Positive supply for PIO and AUX DAC VDD_PADS A10 VDD Positive supply for all other input/output VDD_MEM D11 VDD Positive supply for external memory port and AIO VSS Ground connections for RF circuitry VSS Ground connections for VCO and synthesiser VSS Ground connections for analogue circuitry E2 VSS_RADIO F2 G2 VSS_VCO VSS_ANA J2 H2 L3 K2 VSS_CORE A9 VSS Ground connection for internal digital circuitry VSS_PIO A2 VSS Ground connection for PIO and AUX DAC VSS_PADS A11 VSS Ground connection for input/output except memory port VSS_MEM C11 VSS Ground connection for external memory port VSS C7 VSS Ground connection for internal package shield BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 13 of 100 _aiEceETMOJbniEea~a Product Data Sheet VDD_VCO Electrical Characteristics 4 Electrical Characteristics Absolute Maximum Ratings Rating Max Storage Temperature -40C +150C Supply Voltage: VDD_RADIO, VDD_VCO, VDD_ANA, VDD_CORE -0.40V 1.90V Supply Voltage: VDD_PADS, VDD_PIO, VDD_MEM -0.40V 3.60V Min Max Recommended Operating Conditions Operating Condition Operating Temperature Range (1) -40C 105C Supply Voltage: VDD_RADIO, VDD_VCO, VDD_ANA, VDD_CORE 1.70V 1.90V Supply Voltage: VDD_PADS, VDD_PIO, VDD_MEM 1.70V 3.60V Note: (1) The device functions across this range. See section 5, Radio Characteristics, for guaranteed performance over temperature. BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 14 of 100 _aiEceETMOJbniEea~a Product Data Sheet Min Electrical Characteristics Input/Output Terminal Characteristics Digital Terminals Min Typ Max Unit +0.8 V Input Voltage VIL input logic level low (VDD=3.0V) -0.4 (VDD=1.8V) VIH input logic level high -0.4 - +0.4 V 0.7VDD - VDD+0.4 V - - 0.2 V Output Voltage VOL output logic level low, (lO = 4.0mA), VDD=1.8V - - 0.4 V VOH output logic level high, (lO = -4.0mA), VDD=3.0V VDD-0.2 - - V VOH output logic level high, (lO = -4.0mA), VDD=1.8V VDD-0.4 - - V Input and Tristate Current with: Strong pull-up -100 -20 -10 A Strong pull-down +10 +20 +100 A Weak pull-up -5 -1 0 A Weak pull-down 0.2 +1 +5 A I/O pad leakage current -1 0 +1 A CI Input Capacitance 2.5 - 10 pF USB Terminals Min Typ Max Unit - - 0.3VDD _PADS V 0.7VDD_ PADS - - V VSS_PADS< VIN< VDD_PADS(2) -1 - 1 A CI Input capacitance 2.5 - 10 pF Input threshold VIL input logic level low VIH input logic level high (VDD_PADS=3.46V)(1) Input leakage current Output levels to correctly terminated USB Cable VOL output logic level low 0 - 0.2 V VOH output logic level high 2.8 - VDD_PADS V Notes: VDD_CORE, VDD_RADIO, VDD_VCO and VDD_ANA are at 1.8V unless shown otherwise VDD_PADS, VDD_PIO and VDD_MEM are at 3.0V unless shown otherwise Current drawn into a pin is defined as positive; current supplied out of a pin is defined as negative. (1) 3.46V = 3.3V+5% (2) Internal USB pull-up disabled. BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 15 of 100 _aiEceETMOJbniEea~a Product Data Sheet VOL output logic level low, (lO = 4.0mA), VDD=3.0V Electrical Characteristics Input/Output Terminal Characteristics (Continued) Auxiliary DAC Resolution Average output step size(1) Min Typ Max Unit - - 8 Bits 12.5 14.5 17.0 mV monotonic(1) Output Voltage Voltage range (IO=0mA) - VDD_PIO V -10 - +0.1 mA Minimum output voltage (IO=100A) 0 - 0.2 V Maximum output voltage (IO=10mA) VDD_PIO0.3 - VDD_PIO V -1 - +1 A -220 - +120 mV Integral non-linearity -2 - +2 LSB Settling time (50pF load) - - 5 s Crystal Oscillator Min Typ Max Unit Crystal frequency(2) 8.0 - 32.0 MHz Current range High Impedance leakage current Offset (1) (3) Digital trim range 5 6.2 8 pF Trim step size(3) - 0.1 - pF 2.0 - - mS 870 1500 2400 Power-on Reset Min Typ Max Unit VDD falling threshold 1.40 1.50 1.60 V VDD rising threshold 1.50 1.60 1.70 V Hysteresis 0.05 0.10 0.15 V Transconductance Negative resistance (4) Notes: VDD_CORE, VDD_RADIO, VDD_VCO and VDD_ANA are at 1.8V unless shown otherwise VDD_PADS, VDD_PIO and VDD_MEM are at 3.0V unless shown otherwise The same setting of the digital trim is applied to both XTAL_IN and XTAL_OUT. Current drawn into a pin is defined as positive, current supplied out of a pin is defined as negative. (1) Specified for output voltage between 0.2V and VDD_PIO -0.2V (2) Integer multiple of 250kHz. (3) The difference between the internal capacitance at minimum and maximum settings of the internal digital trim. (4) XTAL frequency = 16MHz; XTAL C0 = 0.75pF; XTAL load capacitance = 8.5pF BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 16 of 100 _aiEceETMOJbniEea~a Product Data Sheet VSS_PIO Electrical Characteristics Input/Output Terminal Characteristics (Continued) Auxiliary ADC Min Typ Max Unit Resolution - - 8 Bits Input voltage range (LSB size = VDD_ANA/255) 0 - VDD_ANA V Accuracy INL -1 - 1 LSB (Guaranteed monotonic) DNL 0 - 1 LSB Offset - 1 LSB - 0.8 % Input Bandwidth - 100 - kHz Conversion time - 2.5 - s - - 700 Samples/s (1) Sample rate Note: (1) Access of ADC is through VM function; therefore, sample rate given is achieved as part of this function. BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 17 of 100 _aiEceETMOJbniEea~a Product Data Sheet -1 -0.8 Gain Error Electrical Characteristics Average Current Consumption(1) VDD=1.8V Temperature = 20C Mode Avg Unit SCO connection HV3 (40ms interval Sniff Mode) (Slave) 26.0 mA 26.0 mA SCO connection HV1 (Slave) 53.0 mA SCO connection HV1 (Master) 53.0 mA ACL data transfer 115.2kbps UART (Master) 15.5 mA ACL data transfer 720kbps USB (Slave) 53.0 mA ACL data transfer 720kbps USB (Master) 53.0 mA ACL connection, Sniff Mode 40ms interval, 38.4kbps UART 4.0 mA ACL connection, Sniff Mode 1.28s interval, 38.4kbps UART 0.5 mA Parked Slave, 1.28s beacon interval, 38.4kbps UART 0.6 mA 0.047 mA Standby Mode (Connected to host, no RF activity) Peak Current Consumption(1) VDD=1.7V to 1.9V Temperature = 20C Mode Typ Max(2) Unit Peak RF current during TX burst (+6 dBm) 65.0 80.0 mA Peak RF current during TX burst (0 dBm) 57.0 70.0 mA Peak RF current during RX burst (-85 dBm) 47.0 70.0 mA Mode Typ Max(2) Unit Deep Sleep 20.0 50.0 A Deep Sleep Leakage Current VDD=1.7V to 1.9V Temperature = 20C Notes: (1) Current consumption is the sum of both BC212015B and the flash. (2) Over process and voltage. These results are correct only for BlueCore2-External version B running version 14.x firmware. A 3.0V Flash VREG 1.8V BlueCore2 Figure 4.1: Current Measurement Circuit BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 18 of 100 _aiEceETMOJbniEea~a Product Data Sheet SCO connection HV3 (40ms interval Sniff Mode) (Master) Radio Characteristics 5 Radio Characteristics All radio characteristics were measured using the application circuit shown in Figure 10.1 but with the RF filter removed. This circuit and associated RF board layout is correct for the 8 x 8mm package. Other package types have slightly different RF impedances (see 9.1, RF Ports); therefore, they need slightly different matching. BlueCore2-External meets the Bluetooth specification v1.1 and v1.2 when used in a suitable application circuit between -40C and +85C. Radio Characteristics VDD = 1.8V Maximum received signal at 0.1% BER RF transmit power(1) Initial carrier frequency tolerance 20dB bandwidth for modulated carrier Drift (single slot packet) Drift (five slot packet) Drift Rate RF power control range RF power range control resolution Frequency (GHz) Min Typ Max Bluetooth Specification 2.402 - -83 -80 2.441 - -85 -82 2.480 - -85 -82 dBm 2.402 0 - - dBm 2.441 0 - - 2.480 0 - - 2.402 3.0 6.0 - 2.441 3.0 6.0 - 2.480 3.0 6.0 - 2.402 - 12 75 2.441 - 10 75 2.480 - 9 75 kHz 2.402 - 879 1000 kHz Unit dBm -70 -20 dBm dBm dBm dBm -6to +4(2) dBm dBm kHz 75 1000 kHz 2.441 - 816 1000 2.480 - 819 1000 kHz 2.402 - - 25 kHz 25 kHz 2.441 - - 25 2.480 - - 25 kHz 2.402 - - 40 kHz 2.441 - - 40 2.480 - - 40 kHz 2.402 - - 20 kHz/50s 2.441 - - 20 2.480 - - 20 16 35 - 16 dB - 1.8 - - dB 40 20 kHz kHz kHz/50s kHz/50s Notes: (1) BlueCore2-External firmware maintains the transmit power to be within the Bluetooth specification v1.1 and v1.2 limits. (2) Class 2 RF transmit power range, Bluetooth specification v1.1 and v1.2 BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 19 of 100 _aiEceETMOJbniEea~a Product Data Sheet Sensitivity at 0.1% BER Temperature = +20C Radio Characteristics Radio Characteristics VDD = 1.8V Temperature = +20C Frequency (GHz) Min Typ Max 2.402 140 165 175 2.441 140 165 175 2.480 140 165 175 kHz 2.402 115 150 - kHz 2.441 115 150 - 2.480 115 150 - - 10 11 11 dB - -4 0 0 dB - -4 0 0 dB - -35 -30 -30 dB - -21 -20 -20 dB - -45 - -40 dB - -45 - -40 dB f1avg "Maximum Modulation" f2max "Minimum Modulation" (1) (3) Adjacent channel selectivity C/I F=F0+1MHz (1) (3) Adjacent channel selectivity C/I F=F0-1MHz (1) (3) Adjacent channel selectivity C/I F=F0+2MHz (1) (3) Adjacent channel selectivity C/I F=F0-2MHz Adjacent channel selectivity C/I FF0 +3MHz Adjacent channel selectivity C/I FF0-5MHz (1) (3) (1) (3) (1) (3) Unit kHz 140 3(C t1 +C trim )(C t2 + C trim ) 2 (2Fx ) R m ((C 0 + C int )(C t1 + C t2 + 2C trim ) + (C t1 + C trim )(C t2 + C trim ))2 Notes: More drive strength is required for higher frequency crystals, higher loss crystals (larger Rm) or higher capacitance loading. Optimum drive level is attained when the level at XTAL_IN is approximately 1V pk-pk. The drive level is determined by the crystal driver transconductance, by setting the PS KEY_XTAL_LVL (0x241). 9.3.7 Negative Resistance Model An alternative representation of the crystal and its load capacitors is a frequency dependent resistive element. The driver amplifier may be considered as a circuit that provides negative resistance. For oscillation, the value of the negative resistance must be greater than that of the crystal circuit equivalent resistance. Although the BlueCore2-External crystal driver circuit is based on a transimpedance amplifier, an equivalent negative resistance may be calculated for it with the following formula: Rneg > 3(Ct 1 +C trim )(Ct 2 + Ctrim ) g m (2Fx ) (C0 + Cint )((Ct 1 + Ct 2 + 2Ctrim ) + (Ct 1 + Ctrim )(Ct 2 + Ctrim )) 2 2 This formula shows the negative resistance of the BlueCore2-External driver as a function of its drive strength. The value of the driver negative resistance may be easily measured by placing an additional resistance in series with the crystal. The maximum value of this resistor (oscillation occurs) is the equivalent negative resistance of the oscillator. Min Frequency Typ Max 8MHz 16MHz 32MHz Initial Tolerance - 25ppm - Pullability - 20ppm/pF - Table 9.3: Crystal Specifications BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 51 of 100 _aiEceETMOJbniEea~a Product Data Sheet BlueCore2-External guarantees a transconductance value of at least 2mA/V at maximum drive level. Device Terminal Descriptions PS Key values for PS KEY_ANA_FREQ (0x1fe) as a function of reference frequency: PS Key Value (Hex) Reference Freq (MHz) PS Key Value (Hex) 8.00 8.25 8.50 8.75 9.00 9.25 9.50 9.75 10.00 10.25 10.50 10.75 11.00 11.25 11.50 11.75 12.00 12.25 12.50 12.75 13.00 13.25 13.50 13.75 14.00 14.25 14.50 14.75 15.00 15.25 15.50 15.75 16.00 16.25 16.50 16.75 17.00 17.25 17.50 17.75 18.00 18.25 18.50 18.75 19.00 19.25 19.50 19.75 49 72 05 6b 36 0c 78 11 43 66 2d 3b 17 4f 7e 1d 5b 56 4d 7a 15 4b 76 0d 7b 16 4c 79 12 44 69 32 04 68 31 03 67 2e 3c 18 50 41 62 25 2b 37 0f 7f 20.00 20.25 20.50 20.75 21.00 21.25 21.50 21.75 22.00 22.25 22.50 22.75 23.00 23.25 23.50 23.75 24.00 24.25 24.50 24.75 25.00 25.25 25.50 25.75 26.00 26.25 26.50 26.75 27.00 27.25 27.50 27.75 28.00 28.25 28.50 28.75 29.00 29.25 29.50 29.75 30.00 30.25 30.50 30.75 31.00 31.25 31.50 31.75 32.00 1e 5c 59 52 45 6a 35 0b 77 0e 7c 19 53 46 6d 3a 14 48 71 02 64 29 33 07 6f 3e 1c 58 51 42 65 2a 34 08 70 01 63 26 2c 38 10 40 61 22 24 28 30 00 60 Table 9.4: PS Key Values for PS KEY_ANA_FREQ BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 52 of 100 _aiEceETMOJbniEea~a Product Data Sheet Reference Freq (MHz) Device Terminal Descriptions Crystal Load Capacitance and Series Resistance Limits with Crystal Frequency 100.0 10.0 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 Load Capacitance (pF) 8 MHz 20 MHz 32 MHz 12 MHz 24 MHz 16 MHz 28 MHz Figure 9.26: Crystal Load Capacitance and Series Resistance Limits with Crystal Frequency Note: Graph shows results for BlueCore2-External crystal driver at maximum drive level. Conditions Ctrim = 3.4pF centre value Crystal Co = 2pF Transconductance = 2mA/V Loop gain = 3 Ct1/Ct2 = 3 BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 53 of 100 _aiEceETMOJbniEea~a Product Data Sheet Max Xtal Rm Value (ESR), (Ohm) 1000.0 Device Terminal Descriptions BlueCore2-Ext Xtal Driver Characteristics 0.007 0.006 0.004 0.003 0.002 0.001 0.000 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 PSKEY_XTAL_LVL Gm Typical Gm Minimum Gm Maximum Figure 9.27: Crystal Driver Transconductance vs. Driver Level Register Setting Note: Drive level is set by PS Key PSKEY_XTAL_LVL (0x241). BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 54 of 100 _aiEceETMOJbniEea~a Product Data Sheet Transconductance (S) 0.005 Device Terminal Descriptions Negative Resistance for 16 MHz Xtal 1000 100 10 2.0 3.0 4.0 5.0 Typical Minim um 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 Drive Level Setting Maximum Figure 9.28: Crystal Driver Negative Resistance as a Function of Drive Level Setting Crystal Parameters Crystal frequency 16MHz Crystal C0 = 0.75pF Circuit Parameters Ctrim = 8pF, maximum value Ct1,Ct2 = 5pF (3.9pF plus 1.1 pF stray) (Crystal total load capacitance 8.5pF) BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 55 of 100 _aiEceETMOJbniEea~a Product Data Sheet Max -ve Resistance 7 10000 Device Terminal Descriptions 9.4 Off-Chip Program Memory The external memory port provides a facility to interface up to 8Mbits of 16-bit external memory. This off-chip storage is used to store BlueCore2-External settings and program code. Flash is the storage mechanism typically used by BlueCore2-External modules. However, external masked-ROM may also be used if the host takes over responsibility for storing configuration data. The external memory port consists of 16 bi-directional data lines, D[15:0]; 19 output address lines, A[18:0] and three active low output control signals (WEB, CEB, REB). WEB is asserted when data is written to external memory. REB is asserted when data is read from external memory and the chip select line. CSB is asserted when any data transfer (read or write) is required. All of the external memory port connections are implemented using CMOS technology and use standard 0V and VDD_MEM (1.8-3.6V) signalling levels. Value Data width 16-bit Minimum total capacity 4Mbit (256kWord) 90ns @125C 50pF load Maximum access time 110ns @85C 10pF load Table 9.5: Flash Device Hardware Requirements In addition to these hardware requirements, particular care should be taken to ensure that the sector organisation of the extended memory has the correct format. A sector is defined as an individually erasable area of external Flash. It is important to make sure that external memory devices meet certain minimum specifications. In addition particular care should be taken to ensure that the sector organisation of the extended memory has the correct format. 9.4.1 Minimum Flash Specification The flash device used with BueCore2-External must meet the following criteria: Standard or extended form of either the JEDEC (AMD/Fujitsu/SST) or Intel command set. Access time must be 90ns @125C 50pF load or 110ns @85C 10pF load. Write strobe of 100ns. Accessible in word mode, i.e., via a 16-bit data bus. Support changing different bits within each word from 1 to 0 in at least two separate programming operations. Programming and erase times must have fixed upper limits. Must be bottom boot or uniform sector. Must have independently erasable sectors with (at least) the following boundaries (see Memory Map for more information). BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 56 of 100 _aiEceETMOJbniEea~a Product Data Sheet Parameter Device Terminal Descriptions Word Address Size (kWords) 0x00000 - 0x01FFF 8 0x02000 - 0x02FFF 4 0x03000 - 0x03FFF 4 0x04000 - 0x07FFF 16 0x08000 - 0x0FFFF 32 0x10000 - 0x17FFF 32 0x18000 - ... Don't care Important Note: Satisfaction of these criteria is not sufficient for a particular device to be used; it must also support the Common Flash Interface described below or be supported in the BlueCore2-External firmware and host-side tools. 9.4.2 Common Flash Interface The firmware can adapt automatically to work with some flash devices. If in addition to satisfying the minimum Flash specification described above, they meet the following criteria: The device must support the Common Flash Interface CFI), as defined by JEDEC standard JESD68. The device must return one of the following codes for either the Primary or Alternative Algorithm Command Set (offset 0x13b or 0x17 of the Query Structure Output). Code Descripton 0x0001 Intel/Sharp Extended Command Set 0x0002 AMD/Fujitsu Standard Command Set 0x0003 Intel Standard Command Set 0x0701 AMD/Fujitsu Extended Command Set Table 9.7: Common Flash Interface Return Codes The device must return one of the following patterns of Erase Block Region Information (beginning at offset 0x2d of the Query Structure Output): If any of these criteria is not met, then the device will not work unless the device is supported by the BlueCore2-External firmware. BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 57 of 100 _aiEceETMOJbniEea~a Product Data Sheet Table 9.6: Flash Sector Boundaries Device Terminal Descriptions 9.4.3 Memory Timing Memory Write Cycle Symbol Min Typ Max Unit twc Write cycle time 300 - - ns tdat:su Data set-up time 150 - - ns tdat:hd Data hold time 150 - - ns taddr:su Address set-up time 150 - - ns twe:low WEB low 100 - - ns Table 9.8: Memory Write Cycle twc A[18:0] Address Valid CSB tdat:hd taddr:su twe:low WEB REB tdat:su D[15:0] Data Valid Figure 9.29 : Memory Write Cycle BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 58 of 100 _aiEceETMOJbniEea~a Product Data Sheet Parameter Device Terminal Descriptions Memory Read Cycle Min(1) Typ Max(1) Unit 114 125 - ns - - 110 ns Read enable access time - - 110 ns Data hold time from address line 0 - - ns Symbol Parameter trc Read cycle time taa Address access time tre tdat:hd Table 9.9: Memory Read Cycle Note: _aiEceETMOJbniEea~a Product Data Sheet (1) Valid for temperatures between -40C and +105C trc taa A[18:0] CSB REB tre WEB tdat:hd D[15:0] Data Valid Data Valid Figure 9.30: Memory Read Cycle BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 59 of 100 Device Terminal Descriptions 9.5 UART Interface BlueCore2-External Universal Asynchronous Receiver Transmitter (UART) interface provides a simple mechanism for communicating with other serial devices using the RS232 standard(1). Note: (1) Uses RS232 protocol but voltage levels are 0V to VDD_PADS, (requires external RS232 transceiver IC) BlueCore2-External UART_RX UART_RTS UART_CTS Figure 9.31: Universal Asynchronous Receiver Figure 9.31 shows four signals used to implement the UART function. When BlueCore2-External is connected to another digital device, UART_RX and UART_TX transfer data between the two devices. The remaining two signals, UART_CTS and UART_RTS, can be used to implement RS232 hardware flow control where both are active low indicators. All UART connections are implemented using CMOS technology and have signalling levels of 0V and VDD_PADS. UART configuration parameters, such as baud rate and packet format, are set using BlueCore2-External software. Note: In order to communicate with the UART at its maximum data rate using a standard PC, an accelerated serial port adapter card is required for the PC. Parameter Baud Rate Parameter Minimum Maximum 1200 baud (2%Error) 9600 baud (1%Error) 1.5Mbaud (1%Error) Flow Control RTS/CTS or None Parity None, Odd or Even Number of Stop Bits 1 or 2 Bits per channel 8 Table 9.10: Possible UART Settings BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 60 of 100 _aiEceETMOJbniEea~a Product Data Sheet UART_TX Device Terminal Descriptions The UART interface is capable of resetting BlueCore2-External upon reception of a break signal. A Break is identified by a continuous logic low on the UART_RX terminal, as Figure 9.32 shows. If tBRK is longer than the value, defined by the PS Key PSKEY_HOST_IO_UART_RESET_TIMEOUT, (0x1a4), a reset will occur. This feature allows a host to initialise the system to a known state. Also, BlueCore2-External can emit a Break character that may be used to wake the Host. tBRK UART_RX Figure 9.32: Break Signal The DFU boot-loader must be loaded into the Flash device before the UART or USB interfaces can be used. This initial Flash programming can be done via the serial peripheral interface. Table 9.11 shows a list of commonly used baud rates and their associated values for the PS Key PSKEY_UART_BAUD_RATE (0x204). There is no requirement to use these standard values. Any baud rate within the supported range can be set in the PS Key according to the following formula. Baud Rate = PSKEY_UART_BAUD_RATE 0.004096 Persistent Store Value Baud Rate Error Hex Dec 1200 0x0005 5 1.73% 2400 0x000a 10 1.73% 4800 0x0014 20 1.73% 9600 0x0027 39 -0.82% 19200 0x004f 79 0.45% 38400 0x009d 157 -0.18% 57600 0x00ec 236 0.03% 76800 0x013b 315 0.14% 115200 0x01d8 472 0.03% 230400 0x03b0 944 0.03% 460800 0x075f 1887 -0.02% 921600 0x0ebf 3775 0.00% 1382400 0x161e 5662 -0.01% Table 9.11: Standard Baud Rates 9.6 USB Interface BlueCore2-External USB devices contain a full-speed (12Mbits/s) USB interface, capable of driving a USB cable directly. No external USB transceiver is required. The device operates as a USB peripheral, responding to requests from a master host controller such as a PC. Both the OHCI and the UHCI standards are supported. The set of USB endpoints implemented behave as specified in the USB section of the Bluetooth specification v1.1 and v1.2 part H:2. As USB is a master-slave oriented system, Bluecore2-External only supports USB slave operation. BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 61 of 100 _aiEceETMOJbniEea~a Product Data Sheet Note: Device Terminal Descriptions 9.6.1 USB Data Connections The USB data lines emerge as pins USB_D+ and USB_D- on the package. These terminals are connected to the internal USB I/O buffers of BlueCore2-External and therefore have a low output impedance. To match the connection to the characteristic impedance of the USB cable, series resistors must be connected to both USB_D+ and USB_D-. 9.6.2 USB Pull-up Resistor BlueCore2-External features an internal USB pull-up resistor. This pulls the USB_D+ pin weakly high when BlueCore2-External is ready to enumerate. It signals to the PC that it is a full-speed (12Mbit/s) USB device. 9.6.3 Power Supply The USB specification dictates that the minimum output high voltage for USB data lines is 2.8V. To safely meet the USB specification, the voltage on the VDD_USB supply terminals must be an absolute minimum of 3.1V. CSR recommends 3.3V for optimal USB signal quality. 9.6.4 Self-Powered Mode In self-powered mode, the circuit is powered from its own power supply and not from the VBUS (5V) line of the USB cable. It draws only a small leakage current (below 0.5mA) from VBUS on the USB cable. This is the easier mode for which to design, as the design is not limited by the power that can be drawn from the USB hub or root port. However, it requires that VBUS be connected to BlueCore2-External via a resistor network (Rvb1 and Rvb2), so BlueCore2-External can detect when VBUS is powered up. BlueCore2-External will not pull USB_D+ high when VBUS is off. BlueCore2-External Rs D+ USB_D+ Rs D- USB_DRvb1 VBUS USB_ON Rvb2 GND Figure 9.33: Connections to BlueCore2-External for Self-Powered Mode The terminal marked USB_ON can be any free PIO pin. The PIO pin selected must be registered by setting PSKEY_USB_PIO_VBUS (0x2d1) to the corresponding pin number. 9.6.5 Bus-Powered Mode In bus-powered mode the application circuit draws its current from the 5V VBUS supply on the USB cable. BlueCore2-External negotiates with the PC during the USB enumeration stage about how much current it is allowed to consume. BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 62 of 100 _aiEceETMOJbniEea~a Product Data Sheet The USB internal pull-up is implemented as a current source, and is compliant with section 7.1.5 of the USB specification v1.1. The internal pull-up pulls USB D+ high to at least 2.8V when loaded with a 15k-5% pull-down resistor (in the hub/host) when VDD_PADS=3.1V). This presents a Thevenin resistance to the host of at least 900. Alternatively, an external 1.5k pull-up resistor can be placed between a PIO line and D+ on the USB cable. The firmware must be alerted to which mode is used by setting PS Key PSKEY_USB_PIO_PULLUP (0x2d0) appropriately. The default setting uses the internal pull-up resistor. Device Terminal Descriptions For Class 2 Bluetooth applications, CSR recommends that the regulator used to derive 3.3V from VBUS is rated at 100mA average current and should be able to handle peaks of 120mA without foldback or limiting. In bus-powered mode, BlueCore2-External requests 100mA during enumeration. For Class 1 Bluetooth applications, the USB power descriptor should be altered to reflect the amount of power required. This is accomplished by setting the PS Key PSKEY_USB_MAX_POWER (0x2c6). This is higher than for a Class 2 application due to the extra current drawn by the Transmit RF PA. When selecting a regulator, be aware that VBUS may go as low as 4.4V. The inrush current (when charging reservoir and supply decoupling capacitors) is limited by the USB specification (see USB 1.1 specification, section 7.2.4.1). Some applications may require soft-start circuitry to limit inrush current if more than 10F is present between VBUS and GND. 9.6.6 Suspend Current USB devices that run off VBUS must be able to enter a suspended state, whereby they consume less that 0.5mA from VBUS. The voltage regulator circuit itself should draw only a small quiescent current (typically less than 100A) to ensure adherence to the suspend-current requirement of the USB specification. This is not normally a problem with modern regulators. Ensure that external LEDs and/or amplifiers can be turned off by BlueCore2-External. The entire circuit must be able to enter the suspend mode. BlueCore2-External Rs D+ USB_D+ Rs D- USB_D- VBUS USB_ON GND Voltage Regulator Figure 9.34: Connections to BlueCore2-External for Bus-Powered Mode Identifier Value Function Rs 27 nominal Rvb1 47k 5% VBUS ON sense divider Rvb2 22k 5% VBUS ON sense divider Impedance matching to USB cable Table 9.12: USB Interface Component Values Note: USB_ON is shared with BlueCore2-External's PIO terminals. BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 63 of 100 _aiEceETMOJbniEea~a Product Data Sheet The 5V VBUS line emerging from a PC is often electrically noisy. As well as regulation down to 3.3V and 1.8V, applications should include careful filtering of the 5V line to attenuate noise that is above the voltage regulator's bandwidth. Excessive noise on the 1.8V supply to the analogue supply pins of Bluecore2-External will result in reduced receive sensitivity and a distorted transmit signal. Device Terminal Descriptions 10ms max 10ms max USB_DETACH 10ms max No max USB_WAKE_UP Port_Impedance Disconnected Figure 9.35: USB_DETACH and USB_WAKE_UP Signal 9.6.7 Detach and Wake_Up Signalling BlueCore2-External can provide out-of-band signalling to a host controller by using the control lines called USB_DETACH and USB_WAKE_UP. These are outside the USB specification (no wires exist for them inside the USB cable), but can be useful when embedding BlueCore2-External into a circuit where no external USB is visible to the user. Both control lines are shared with PIO pins and can be assigned to any PIO pin by setting the PS Keys PSKEY_USB_PIO_DETACH (0x2ce) and PSKEY_USB_PIO_WAKEUP (0x2cf) to the selected PIO number). USB_DETACH, is an input which, when asserted high, causes BlueCore2-External to put USB_D- and USB_D+ in a high-impedance state and turns off the pull-up resistor on USB_D+. This detaches the device from the bus and is logically equivalent to unplugging the device. When USB_DETACH is taken low, BlueCore2-External will connect back to USB and await enumeration by the USB host. USB_WAKE_UP, is an active high output (used only when USB_DETACH is active) to wake up the host and allow USB communication to recommence. It replaces the function of the software USB WAKE_UP message (which runs over the USB cable proper), and cannot be sent while BlueCore2-External is effectively disconnected from the bus. 9.6.8 USB Driver A USB Bluetooth device driver is required to provide a software interface between BlueCore2-External and Bluetooth software running on the host computer. Suitable drivers are available from www.csrsupport.com. 9.6.9 USB 1.1 Compliance BlueCore2-External is qualified to the USB specification v1.1, details of which are available from www.usb.org. The specification contains valuable information on aspects such as PCB track impedance, supply inrush current and product labelling. Although BlueCore2-External meets the USB specification, CSR cannot guarantee that an application circuit designed around the chip is USB compliant. The choice of application circuit, component choice and PCB layout all affect USB signal quality and electrical characteristics. The information in this document is intended as a guide and should be read in association with the USB specification, with particular attention being given to chapter 7. Independent USB qualification must be sought before an application is deemed USB compliant and can bear the USB logo. Such qualification can be obtained from a USB plugfest or from an independent USB test house. Terminals USB_D+ and USB_D- adhere to the USB specification v1.1 (chapter 7) electrical requirements. BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 64 of 100 _aiEceETMOJbniEea~a Product Data Sheet USB_DP USB_DN USB_PULL_UP Device Terminal Descriptions 9.6.10 USB v2.0 Compatibility BlueCore2-External is compatible with USB specification v2.0 host controllers; under these circumstances the two ends agree the mutually acceptable rate of 12Mbits/s according to the USB v2.0 specification. 9.7 Serial Peripheral Interface BlueCore2-External uses 16-bit data and 16-bit address serial peripheral interface, where transactions may occur when the internal processor is running or is stopped. This section details the considerations required when interfacing to BlueCore2-External via the four dedicated serial peripheral interface terminals. Data may be written or read one word at a time or the auto increment feature may be used to access blocks. Instruction Cycle BlueCore2-External is the slave and receives commands on SPI_MOSI and outputs data on SPI_MISO. Table 9.13 shows the instruction cycle for an SPI transaction. 1 Reset the SPI interface Hold SPI_CSB high for two SPI_CLK cycles 2 Write the command word Take SPI_CSB low and clock in the 8-bit command 3 Write the address Clock in the 16-bit address word 4 Write or read data words Clock in or out 16-bit data word(s) 5 Termination Take SPI_CSB high Table 9.13: Instruction Cycle for an SPI Transaction With the exception of reset, SPI_CSB must be held low during the transaction. Data on SPI_MOSI is clocked into the BlueCore2-External on the rising edge of the clock line SPI_CLK. When reading, BlueCore2-External will reply to the master on SPI_MISO with the data changing on the falling edge of the SPI_CLK. The master provides the clock on SPI_CLK. The transaction is terminated by taking SPI_CSB high. Sending a command word and the address of a register for every time it is to be read or written is a significant overhead, especially when large amounts of data are to be transferred. To overcome this BlueCore2-External offers increased data transfer efficiency via an auto increment operation. To invoke auto increment, SPI_CSB is kept low, which auto increments the address, while providing an extra 16 clock cycles for each extra word to be written or read. 9.7.2 Writing to BlueCore2-External To write to BlueCore2-External, the 8-bit write command (00000010) is sent first (C[7:0]) followed by a 16-bit address (A[15:0]). The next 16-bits (D[15:0]) clocked in on SPI_MOSI are written to the location set by the address (A). Thereafter for each subsequent 16-bits clocked in, the address (A) is incremented and the data written to consecutive locations until the transaction terminates when SPI_CSB is taken high. Reset End of Cycle Write_Command Address(A) Data(A) Data(A+1) etc SPI_CSB SPI_CLK SPI_MOSI SPI_MISO C7 Processor State C6 C1 C0 A15 A14 A1 A0 D15 D14 D1 D0 D15 D14 D1 D0 D15 D14 MISO Not Defined During Write D1 D0 Don't Care Processor State Figure 9.36: Write Operation BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 65 of 100 _aiEceETMOJbniEea~a Product Data Sheet 9.7.1 Device Terminal Descriptions 9.7.3 Reading from BlueCore2-External Reading from BlueCore2-External is similar to writing to it. An 8-bit read command (00000011) is sent first (C[7:0]), followed by the address of the location to be read (A[15:0]). BlueCore2-External then outputs on SPI_MISO a check word during T[15:0] followed by the 16-bit contents of the addressed location during bits D[15:0]. The check word is composed of {command, address [15:8]}. The check word may be used to confirm a read operation to a memory location. This overcomes the problems encountered with typical serial peripheral interface slaves, whereby it is impossible to determine whether the data returned by a read operation is valid data or the result of the slave device not responding. Reset End of Cycle Read_Command Address(A) Check_Word Data(A) Data(A+1) etc SPI_CSB SPI_CLK C7 SPI_MOSI SPI_MISO Processor State C6 C1 C0 A15 A14 A1 MISO Not Defined During Address A0 Don't Care T15 T14 T1 T0 D15 D14 D1 D0 D15 D14 D1 D0 D15 D14 D1 D0 Processor State Figure 9.37: Read Operation 9.7.4 Multi Slave Operation BlueCore2-External should not be connected in a multi slave arrangement by simple parallel connection of slave MISO lines. When BlueCore2-External is deselected (SPI_CSB = 1), the SPI_MISO line does not float, instead, BlueCore2-External outputs 0 if the processor is running or 1 if it is stopped. 9.8 PCM Interface Pulse Code Modulation (PCM) is the standard method used to digitise human voice patterns for transmission over digital communication channels. Through its PCM interface, BlueCore2-External has hardware support for continual transmission and reception of PCM data, thus reducing processor overhead for wireless headset applications. BlueCore2-External offers a bi-directional digital audio interface that routes directly into the baseband layer of the on-chip firmware. It does not pass through the HCI protocol layer. Hardware on BlueCore2-External allows the data to be sent to and received from a SCO connection. Up to three SCO connections can be supported by the PCM interface at any one time.(1) Note: (1) Subject to firmware support, contact CSR for current status. BlueCore2-External can operate as the PCM interface Master generating an output clock of 128, 256 or 512kHz. When configured as PCM interface slave it can operate with an input clock up to 2048kHz. BlueCore2-External is compatible with a variety of clock formats, including Long Frame Sync, Short Frame Sync and GCI timing environments. It supports 13 or 16-bit linear, 8-bit -law or A-law companded sample formats at 8ksamples/s and can receive and transmit on any selection of three of the first four slots following PCM_SYNC. The PCM configuration options are enabled by setting the PS Key PS KEY_PCM_CONFIG (0x1b3). BlueCore2-External interfaces directly to PCM audio devices includes the following: BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 66 of 100 _aiEceETMOJbniEea~a Product Data Sheet If SPI_CSB is kept low, data from consecutive locations is read out on SPI_MISO for each subsequent 16 clocks, until the transaction terminates when SPI_CSB is taken high. Device Terminal Descriptions Qualcomm MSM 3000 series and MSM 5000 series CDMA baseband devices OKI MSM7705 four channel A-law and -law CODEC Motorola MC145481 8-bit A-law and -law CODEC Motorola MC145483 13-bit linear CODEC BlueCore2-External is also compatible with the Motorola SSITM interface _aiEceETMOJbniEea~a Product Data Sheet BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 67 of 100 Device Terminal Descriptions 9.8.1 PCM Interface Master/Slave When configured as the Master of the PCM interface, BlueCore2-External generates PCM_CLK and PCM_SYNC. BlueCore2-External PCM_OUT PCM_IN PCM_SYNC 128/256/512kHz 8kHz Figure 9.38: BlueCore2-External as PCM Interface Master When configured as the Slave of the PCM interface, BlueCore2-External accepts PCM_CLK rates up to 2048kHz. BlueCore2-External PCM_OUT PCM_IN PCM_CLK PCM_SYNC Up to 2048kHz 8kHz Figure 9.39: BlueCore2-External as PCM Interface Slave Notes: A minimum of three clock cycles needs to be applied before a SCO is established BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 68 of 100 _aiEceETMOJbniEea~a Product Data Sheet PCM_CLK Device Terminal Descriptions 9.8.2 Long Frame Sync Long Frame Sync is the name given to a clocking format that controls the transfer of PCM data words or samples. In Long Frame Sync, the rising edge of PCM_SYNC indicates the start of the PCM word. When BlueCore2-External is configured as PCM Master, generating PCM_SYNC and PCM_CLK, then PCM_SYNC is 8-bits long. When BlueCore2-External is configured as PCM Slave, PCM_SYNC may be from two consecutive falling edges of PCM_CLK to half the PCM_SYNC rate (i.e., 62.5s) long. PCM_SYNC PCM_CLK PCM_IN Undefined 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 8 Undefined Figure 9.40: Long Frame Sync (Shown with 8-bit Companded Sample) BlueCore2-External samples PCM_IN on the falling edge of PCM_CLK and transmits PCM_OUT on the rising edge. PCM_OUT may be configured to be high impedance on the falling edge of PCM_CLK in the LSB position or on the rising edge. 9.8.3 Short Frame Sync In Short Frame Sync the falling edge of PCM_SYNC indicates the start of the PCM word. PCM_SYNC is always one clock cycle long. PCM_SYNC PCM_CLK PCM_OUT PCM_IN Undefined 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Undefined Figure 9.41: Short Frame Sync (Shown with 16 bit Sample) As with Long Frame Sync, BlueCore2-External samples PCM_IN on the falling edge of PCM_CLK and transmits PCM_OUT on the rising edge. PCM_OUT may be configured to be high impedance on the falling edge of PCM_CLK in the LSB position or on the rising edge. BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 69 of 100 _aiEceETMOJbniEea~a Product Data Sheet PCM_OUT Device Terminal Descriptions 9.8.4 Multi-Slot Operation More than one SCO connection over the PCM interface is supported using multiple slots. Up to three SCO connections can be carried over any of the first four slots. LONG_PCM_SYNC Or SHORT_PCM_SYNC PCM_OUT 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 PCM_IN Do Not Care 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 8 8 Do Not Care Figure 9.42: Multi slot Operation with Two Slots and 8-bit Companded Samples 9.8.5 GCI Interface BlueCore2-External is compatible with the General Circuit Interface, a standard synchronous 2B+D ISDN timing interface. The two 64Kbps B channels can be accessed when this mode is configured. In the GCI interface two clock cycles are required for each bit of the voice sample. The voice sample format is 8-bit companded. As for the standard PCM interface up to 3 SCO connections can be carried over the first four slots. PCM_SYNC PCM_CLK PCM_OUT PCM_IN Do Not C a re 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 B1 Channel Do Not C a re B2 Channel Figure 9.43: GCI Interface The start of frame is indicated by PCM_SYNC and runs at 8kHz. With BlueCore2-External in Slave mode, the frequency of PCM_CLK can be up to 4.096MHz. In order to configure the PCM interface to work in GCI mode it is necessary to set GCI_MODE bit in PSKEY_PCM_CONFIG32. The SAMPLE_FORMAT bits should be set to 0x0b01 to allow for the double clocking of each. BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 70 of 100 _aiEceETMOJbniEea~a Product Data Sheet PCM_CLK Device Terminal Descriptions 9.8.6 Slots and Sample Formats BlueCore2-External can receive and transmit on any selection of the first four slots following each sync pulse. Slot durations can be either 8 or 16 clock cycles. Durations of 8 clock cycles may only be used with 8-bit sample formats. Durations of 16 clocks may be used with 8, 13 or 16-bit sample formats. Bluecore2-External supports 13-bit linear, 16-bit linear and 8-bit -law or A-law sample formats. The sample rate is 8ksamples/s. The bit order may be little or big endian. When 16-bit slots are used, the 3 or 8 unused bits in each slot may be filled with sign extension, padded with zeros or a programmable 3-bit audio attenuation compatible with some Motorola CODECs. PCM_OUT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 8-Bit Sample A 16-bit slot with 8-bit companded sample and sign extension selected. 8-Bit Sample PCM_OUT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Zeros Padding A 16-bit slot with 8-bit companded sample and zeros padding selected. Sign Extension PCM_OUT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 15 16 13-Bit Sample A 16-bit slot with 13-bit linear sample and sign extension selected. 13-Bit Sample PCM_OUT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Audio Gain A 16-bit slot with 13-bit linear sample and audio gain selected. Figure 9.44: 16 bit Slot Length and Sample Formats 9.8.7 Additional Features BlueCore2-External has a mute facility that forces PCM_OUT to be 0. In Master mode, PCM_SYNC may also be forced to 0 while keeping PCM_CLK running (which some CODECS use to control power-down). BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 71 of 100 _aiEceETMOJbniEea~a Product Data Sheet Sign Extension Device Terminal Descriptions 9.8.8 PCM Timing Information Symbol Parameter Min(1) Typ Max(1) Unit - kHz 128 fmclk PCM_CLK frequency - 256 512 - PCM_SYNC frequency (2) - 8 kHz Tmclkh PCM_CLK high 980 - Tmclkl(2) PCM_CLK low 730 - - ns tdmclksynch Delay time from PCM_CLK high to PCM_SYNC high - - 20 ns tdmclkpout Delay time from PCM_CLK high to valid PCM_OUT - - 20 ns tdmclklsyncl Delay time from PCM_CLK low to PCM_SYNC low (Long Frame Sync only) - - 20 ns tdmclkhsyncl Delay time from PCM_CLK high to PCM_SYNC low - - 20 ns tdmclklpoutz Delay time from PCM_CLK low to PCM_OUT high impedance - - 20 ns tdmclkhpoutz Delay time from PCM_CLK high to PCM_OUT high impedance - - 20 ns tsupinclkl Set-up time for PCM_IN valid to PCM_CLK low 30 - - ns thpinclkl Hold time for PCM_CLK low to PCM_IN invalid 30 - - ns tr Edge rise time (Cl = 50 pf, 10-90 %) - - 15 ns tf Edge fall time (Cl = 50 pf, 10-90 %) - - 15 ns ns Notes: (1) Valid for temperatures between -40C and +105C (2) Assumes normal system clock operation. Figures will vary during low power modes, when system clock speeds are reduced. BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 72 of 100 _aiEceETMOJbniEea~a Product Data Sheet Table 9.14: PCM Master Timing Device Terminal Descriptions tdmclklsyncl tdmclksynch tdmclkhsyncl PCM_SYNC fmlk tmclkh tmclkl tdmclklpoutz tdmclkpout PCM_OUT MSB (LSB) tsupinclkl PCM_IN tr, tf tdmclkhpoutz LSB (MSB) thpinclkl MSB (LSB) LSB (MSB) Figure 9.45: PCM Master Timing BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 73 of 100 _aiEceETMOJbniEea~a Product Data Sheet PCM_CLK Device Terminal Descriptions Typ Max(1) Unit PCM clock frequency (Slave mode: input) 64 - 2048 kHz fsclk PCM clock frequency (GCI mode) 128 - 4096 kHz tsclkl PCM_CLK low time 200 - - ns tsclkh PCM_CLK high time 200 - - ns thsclksynch Hold time from PCM_CLK low to PCM_SYNC high 30 - - ns tsusclksynch Set-up time for PCM_SYNC high to PCM_CLK low 30 - - ns tdpout Delay time from PCM_SYNC or PCM_CLK whichever is later, to valid PCM_OUT data (Long Frame Sync only) - - 20 ns tdsclkhpout Delay time from CLK high to PCM_OUT valid data - - 20 ns tdpoutz Delay time from PCM_SYNC or PCM_CLK low, whichever is later, to PCM_OUT data line high impedance - - 20 ns tsupinsclkl Set-up time for PCM_IN valid to CLK low 30 - - ns thpinsclkl Hold time for PCM_CLK low to PCM_IN invalid 30 - tr Edge rise time (Cl = 50 pF, 10-90 %) - - 15 ns Tf Edge fall time (Cl = 50 pF, 10-90 %) - - 15 ns Parameter fsclk ns Table 9.15: PCM Slave Timing Note: (1) Valid for temperatures between -40C and +105C fsclk tsclkh tsclkl PCM_CLK thsclksynch tsusclksynch PCM_SYNC tdpoutz tdpout PCM_OUT tdsclkhpout MSB (LSB) tr, tf tdpoutz LSB (MSB) thpinsclkl tsupinsclkl PCM_IN MSB (LSB) LSB (MSB) Figure 9.46: PCM Slave Timing BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 74 of 100 _aiEceETMOJbniEea~a Product Data Sheet Min(1) Symbol Device Terminal Descriptions 9.8.9 PCM Configuration PS Key The PCM configuration is set using PSKEY_PCM_CONFIG32. Table 9.16 details this PS Key(1). The default for this PS Key is 0x00000000, i.e., 13-bit linear voice format, long frame sync and interface master generating 256kHz PCM_CLK with no tristating of PCM_OUT. Name Bit Position - Description Set to 0. SLAVE_MODE_EN 1 0 selects master mode with internal generation of PCM_CLK and PCM_SYNC. 1 selects slave mode requiring externally generated PCM_CLK and PCM_SYNC. SHORT_SYNC_EN 2 0 selects long frame sync (rising edge indicates start of frame), 1 selects short frame sync (falling edge indicates start of frame). - 3 Set to 0. SIGN_EXTEND_EN 4 0 selects padding of 8 or 13-bit voice sample into a 16-bit slot by inserting extra lsbs, 1 selects sign extension. When padding is selected with 13-bit voice sample, the 3 padding bits are the audio gain setting; with 8-bit samples the 8 padding bits are zeroes. LSB_FIRST_EN 5 0 transmits and receives voice samples msb first, 1 uses lsb first. 6 0 drives PCM_OUT continuously, 1 tristates PCM_OUT immediately after the falling edge of PCM_CLK in the last bit of an active slot, assuming the next slot is not active. 7 0 tristates PCM_OUT immediately after the falling edge of PCM_CLK in the last bit of an active slot, assuming the next slot is also not active. 1 tristates PCM_OUT after the rising edge of PCM_CLK. SYNC_SUPPRESS_EN 8 0 enables PCM_SYNC output when master, 1 suppresses PCM_SYNC whilst keeping PCM_CLK running. Some CODECs utilise this to enter a low power state. GCI_MODE_EN 9 1 enables GCI mode. MUTE_EN 10 1 forces PCM_OUT to 0. - [20:16] Set to (bits 00000) MASTER_CLK_RATE [22:21] Selects 128 (bits 01), 256 (bits 00), 512 (bits 10) kHz PCM_CLK frequency when master. - [26:23] Ignored. Set to (bits 0000). [28:27] Selects between 13 (bits 00), 16(bits 01), 8 (bits 10) bit sample with 16 cycle slot duration or 8 (bits 11) bit sample with 8 cycle slot duration. TX_TRISTATE_EN TX_TRISTATE_RISING_EDGE_EN SAMPLE_FORMAT Table 9.16: Setting PCM Configuration Using PSKEY_PCM_CONFIG32 Note: (1) Subject to firmware support; contact CSR for current status. BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 75 of 100 _aiEceETMOJbniEea~a Product Data Sheet 0 Device Terminal Descriptions 9.9 PIO Interface The Parallel Input Output (PIO) Port is a general-purpose I/O interface to BlueCore2-External. The port consists of twelve programmable, bi-directional I/O lines, PIO[11:0]. Programmable I/O lines can be accessed either via an embedded application running on BlueCore2-External or via private channel or manufacturer-specific HCI commands. PIO[0]/RXEN PIO[1]/TXEN This is a multifunction terminal. Its function is selected by setting the PS Key PSKEY_TX/RX_PIO_CONTROL (0x209). It can be used as a programmable I/O, however it will normally be used to control the radio front end transmit switch. Refer to CSR documentation for BlueCore2-External software. PIO[2]/USB_PULL_UP(1) This is a multifunction terminal. The function depends on whether BlueCore2-External is a USB or UART capable version. On UART versions, this terminal is a programmable I/O. On USB versions, it can drive a pull-up resistor on USB_D+. For application using external RAM this terminal may be programmed for chip select. PIO[3]/USB_WAKE_UP(1) This is a multifunction terminal. On UART versions of BlueCore2-External this terminal is a programmable I/O. On USB versions, its function is selected by setting the PS Key PSKEY_USB_PIO_WAKEUP (0x2cf) either as a programmable I/O or as a USB_WAKE_UP function. PIO[4]/USB_ON(1) This is a multifunction terminal. On UART versions of BlueCore2-External this terminal is a programmable I/O. On USB versions, the USB_ON function is also selectable (see USB Interface section 9.6). PIO[5]/USB_DETACH(1) This is a multifunction terminal. On UART versions of BlueCore2-External this terminal is a programmable I/O. On USB versions, the USB_DETACH function is also selectable (see USB Interface section 9.6). PIO[6]/CLK_REQ This is multifunction terminal, its function is determined by PS Keys. Using PSKEY_CLOCK_REQUEST_ENABLE, (0x246) this terminal can be configured to be low when BlueCore2-External is in Deep Sleep and high when a clock is required. The clock must be supplied within 4ms of the rising edge of PIO[6] to avoid losing timing accuracy in certain Bluetooth operating modes. PIO[7] Programmable I/O terminal. PIO[8] Programmable I/O terminal. PIO[9] Programmable I/O terminal. BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 76 of 100 _aiEceETMOJbniEea~a Product Data Sheet This is a multifunction terminal. Its function is selected by setting the PS Key PSKEY_TX/RX_PIO_CONTROL (0x209). It can be used as a programmable I/O, however it will normally be used to control the radio front-end receive switch. Device Terminal Descriptions PIO[10] Programmable I/O terminal. PIO[11] Programmable I/O terminal. Note: A 9.10 USB functions can be software mapped to any PIO terminal. Power Supplies Power for digital circuitry. VDD_RADIO Power for RF circuitry. VDD_VCO Power for VCO and synthesiser circuitry. VDD_ANA Power for analogue circuitry. To isolate the VCO from supply noise, a filter circuit is required. Refer to CSR documentation for supply decoupling. VDD_PADS Power for I/O circuitry. VDD_MEM Power for external memory port circuitry. VSS_CORE Ground for digital circuitry. VSS_RADIO Ground for RF circuitry. VSS_VCO Ground for VCO and synthesiser circuitry. VSS_PADS Ground for I/O circuitry. VSS_MEM Ground for external memory port circuitry. BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 77 of 100 _aiEceETMOJbniEea~a Product Data Sheet VDD_CORE Device Terminal Descriptions NC To guarantee correct operation, NC must not be connected externally. CSR recommends that unconnected terminals be placed on unconnected pads to ensure mechanical robustness. RESET Tie to VSS either directly or via a 1kresistor. _aiEceETMOJbniEea~a Product Data Sheet BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 78 of 100 Figure 10.1: Circuit Used for Data Book Characterisation J34 J33 J32 TP1 OUT MDR741F NF 2 GND GND 1 IN U3 3 4 T1 HHM-1517 C1 47p N/C 6 1 5 2 +1V8 4 3 L1 3n9 C3 1p8 C2 1p8 3n9 L3 3n9 L2 C7 220p (COG) R2 180K C4 10n C6 NF TP2 C5 10n R1 NF J1 H2 D2 F1 G1 E1 +1V8 K1 LOOP_FILTER VSS_VCO AUX_DAC TX_B TX_A RF_IN VDD_ANA C8 2u2 +1V8 H3 D1 VDD_RADIO VDD_RADIO VSS_VCO VSS VSS_ANA VSS_RADIO VSS_RADIO VSS_RADIO VSS_CORE VSS_PADS VSS_PIO VSS_MEM H1 VMEM J2 C7 L3 F2 G2 E2 A9 A11 A2 C11 VDD_VCO R3 0R C10 10n +3V3 C9 47p D10 REB C10 CSB E10 WEB BC212015ADN-E4 U1 VMEM R4 2R2 +1V8 C17 10n L1 +1V8 E1 D1 C1 A1 B1 D2 C2 A2 B5 A5 C5 D5 B6 A6 C6 D6 E6 B2 C3 D4 A4 F1 G1 B4 F6 C13 10n +3V3 +1V8 B3 D3 C4 A3 U2 AM29LV800B E2 H2 E3 H3 H4 E4 H5 E5 F2 G2 F3 G3 F4 G5 F5 G6 VMEM A0 DQ0 A1 DQ1 A2 DQ2 A3 DQ3 A4 DQ4 A5 DQ5 A6 DQ6 A7 DQ7 A8 DQ8 A9 DQ9 A10 DQ10 A11 DQ11 A12 DQ12 A13 DQ13 A14 DQ14 A15 DQ15A-1 A16 A17 A18 RY/ BY A19 WE NC CE NC OE NC RESET BYTE R6 0R0 G4 A1 VDD_PIO A10 VDD_PADS D11 VDD_MEM A8 VDD_CORE C11 3p3 X1 16MHz C12 10p AIO[2] AIO[1] AIO[0] TEST_EN RESET UART_RX UART_TX UART_CTS UART_RTS USB_D+ USB_D- SPI_CLK SPI_MISO SPI_MOSI SPI_CSB PCM_SYNC PCM_IN PCM_OUT PCM_CLK J3 L4 K3 G3 F3 C9 C8 B6 B7 A7 A6 B5 B4 A5 A4 B11 B10 B9 B8 C6 C5 C4 D3 E3 C3 A3 B1 B2 B3 C2 C1 C16 100n PIO[11] PIO[10] PIO[9] PIO[8] PIO[7] PIO[6] PIO[5] PIO[4] PIO[3] PIO[2] PIO[1] PIO[0] A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11] A[12] A[13] A[14] A[15] A[16] A[17] A[18] XTAL_IN K2 VSS_ANA L2 XTAL_OUT D9 E9 E11 F9 F10 F11 G9 G10 G11 H9 H10 H11 J8 J9 J10 J11 K9 K10 K11 VCC Production Information VSS H6 VSS H1 (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Page 79 of 100 1 3 C15 10n +3V3 U4 Vin CE R7 1K 2 GND Vout NC XC6204B182MR 5 4 _aiEceETMOJbniEea~a Product Data Sheet BC212015-ds-001Pj D[0] D[1] D[2] D[3] D[4] D[5] D[6] D[7] D[8] D[9] D[10] D[11] D[12] D[13] D[14] D[15] +1V8 C14 2u2 J5 J4 J6 J14 J12 J11 J13 J22 J23 J9 J7 J10 J8 J19 J20 J18 J21 J24 J25 J26 J27 J28 J29 J30 J31 J3 J1 J17 J2 J16 J15 10.1 K8 L9 L10 L11 L8 J7 K7 L7 J6 K6 L6 J5 K5 L5 J4 K4 +1V8 Schematics 10 Schematics VFBGA, LGA and LFBGA Package BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 80 of 100 1 1 1 1 1 1 1 2 1 1 2 1 5 2 2 1 2 1 1 1 1 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 R7 R2 R1 L1, L2, L3 C4, C5, C10, C13, C17 C15, C16 C8, C14 C6 R3, R6 R4 C7 C1, C9 C12 C11 T1 C2, C3 U4 U3 X1 PCB U2 U1 Circuit Ref. Value THICK FILM RESISTOR THICK FILM RESISTOR THICK FILM RESISTOR Thin Film INDUCTOR THICK FILM RESISTOR THICK FILM RESISTOR CERAMIC CAPACITOR CERAMIC CAPACITOR CERAMIC CAPACITOR CERAMIC CAPACITOR CERAMIC CAPACITOR CERAMIC CAPACITOR CERAMIC CAPACITOR Surface mount balun CERAMIC CAPACITOR Tol 1k 180k NF 3n9 100n 2u2 NF 0R 2R2 10n 220p 47p 10p 3p3 0.2nH 01.nH 5% 5% 5% +80/-20% +80/-20% +80/-20% 5% 5% 5% +/-0.25pF 2.4GHz 1p8 +/-0.25pF Voltage regulator 1v8 Not Fitted SURFACE MOUNT CRYSTAL 16 MHz 4 Layer FLASH MEMORY BlueCore2 Description 16V 16V 50V 50V 50V 50V 50V 50V Voltage X7R X7R X7R COG COG COG COG COG FR4 CMOS CMOS Material Part Type 0402 0402 0402 0402 0603 0805 0402 0402 0402 0402 0603 0402 0402 0402 IND RES RES RES RES CAP CAP CAP CAP CAP CAP CAP TSX-10A CRYSTAL (4x2.5mm) 2012 0402 CAP PCB TFBGA6x9 FLASH MEM BGA11x11 BLUECORE2 96 ball 0.65mm Pt SOT-23-5 REG Package Meggit Murata Rohm Rohm Rohm Rohm Murata TDK Rohm Rohm Rohm Rohm Rohm TDK Rohm Toyocom TOREX TDK Murata Murata Murata Murata Murata Murata Express Circuits AMD CSR Manufacturer _aiEceETMOJbniEea~a Product Data Sheet Item Qty No. Req. BlueCore2-External Characterisation Circuit BOM 3640 1E3n9A LQP10A3N9B00 MCR01MZSJ102E MCR01MZSJ184E MCR01EZH000E MCR01MZSJ2R2E CC0805CY5V225ZTR HHM-1517 MCH155A1R8CK GRM36C0G1R8C50PT MCH155A3R3CK GRM36C0G3R3C50PT MCH155A100JK GRM36C0G100J50PT MCH155A470JK GRM36C0G470J50PT MCH185A221JK GRM39C0G221J50PT TN4-25820 BC212015BESDN-E4 Lot No. DC7283.00 DTE 0215 XC6204B182MR DEV-PC-1129A AM29LV800BB-90RWAI Manufacturers Part No. Schematics RF IN/OUT Z=50 3V3 GND T1 3 1 T2 GND 3 1 CE VIN VOUT U3 XC6209B182MR MDR741F C13 2u2 2 4 F1 GND 2 BYP 4 5 1V8 1 C14 2u2 15p 3n9 L1 T1 HHM-1517 2 6 C1 3 5 1V8 C3 1p8 C2 1p8 L3 3n9 L2 3n9 R3 180k TX_B TX_A AUX_DAC RF_IN C15 220p (COG) F1 G1 D2 E1 C5 10n K1 VDD_ANA C10 47p H1 VDD_VCO C4 15p J1 LOOP_FILTER 4 H3 VDD_RADIO D1 VDD_RADIO VSS_VCO H2 R1 0R 3V3 H6 VSS H1 VSS 1V8 C6 10n C7 10n 1V8 R2 2R2 C8 10n 3V3 BlueCore2 External RY/BYB 1V8 B3 NC C4 NC D4 NC D3 NC VSS_VCO VSS VSS_ANA VSS_RADIO VSS_RADIO VSS_RADIO VSS_CORE VSS_PADS VSS_PIO VSS_MEM J2 C7 L3 F2 G2 E2 A9 A11 A2 C11 A1 VDD_PIO A10 VDD_PADS A8 VDD_CORE D11 VDD_MEM A[18] A[17] A[16] A[15] A[14] A[13] A[12] A[11] A[10] A[9] A[8] A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0] K11 K10 K9 J11 J10 J9 J8 H11 H10 H9 G11 G10 G9 F11 F10 F9 E11 E9 D9 C3 B2 E6 D6 C6 A6 B6 D5 C5 A5 B5 A2 C2 D2 B1 A1 C1 D1 E1 FLASH MEMORY A18 A17 A16 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 L1 XTAL_IN C11 3p3 XT1 16MHz TSX-10 C12 10p L2 XTAL_OUT C10 CSB D10 REB E10 WEB K2 VSS_ANA D[15] D[14] D[13] D[12] D[11] D[10] D[9] D[8] D[7] D[6] D[5] D[4] D[3] D[2] D[1] D[0] K4 J4 L5 K5 J5 L6 K6 J6 L7 K7 J7 L8 L11 L10 L9 K8 G6 F5 G5 F4 G3 F3 G2 F2 E5 H5 E4 H4 H3 E3 H2 E2 G4 VCC F6 BYTEB B4 RESETB 3V3 C16 47n U1 G3 K3 L4 F3 J3 C9 10n 3V3 R5 470k C17 1u NOTES NOTE: R1 MAY BE A SMALL INDUCTOR (e.g. 3.9nH, 6.8nH) GROUND USB_D+, USB_D- IF UNUSED 22k R4 TO EXTERNAL CODEC TEST_EN AIO[0] AIO[1] RST AIO[2] 12 MBIT/S USB TO PC A6 USB_DA7 USB_D+ B11 PCM_SYNC B8 PCM_CLK B10 PCM_IN B9 PCM_OUT BRING OUT TO TEST PADS FOR PROGRAMMING USER ASSIGNABLE GENERAL PURPOSE I/O UART CONNECTION (BCSP, H4 or USER DATA) C6 C5 C4 D3 E3 C3 A3 B1 B2 B3 C2 C1 B5 SPI_CLK B4 SPI_MISO A5 SPI_MOSI A4 SPI_CSB PIO[11] PIO[10] PIO[9] PIO[8] PIO[7] PIO[6] PIO[5] PIO[4] PIO[3] PIO[2] PIO[1] PIO[0] C9 UART_RX C8 UART_TX B6 UART_CTS B7 UART_RTS MBM29LV800BA-90PBT U2 DQ15/A-1 DQ14 DQ13 DQ12 DQ11 DQ10 DQ9 DQ8 DQ7 DQ6 DQ5 DQ4 DQ3 DQ2 DQ1 DQ0 Production Information A3 (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. _aiEceETMOJbniEea~a Product Data Sheet BC212015-ds-001Pj F1 CEB G1 OEB A4 WEB 1V8 Schematics Figure 10.2: Example Application Circuit For a full BlueCore2-External reference design, contact your local CSR representative. Page 81 of 100 Package Dimensions 11 Package Dimensions 11.1 8 x 8 and 6 x 6 VFBGA Packages Top View Bottom View _aiEceETMOJbniEea~a Product Data Sheet Figure 11.1: BlueCore2-External VFBGA Package Dimensions BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 82 of 100 Package Dimensions 11.2 6 x 6 LGA Package Top View Bottom View D PIN 1 CORNER PIN A1 A A B B C C D D E E E1 E F G G H H J J K K L L 1 2 3 4 5 6 7 8 9 10 11 11 10 9 8 7 6 5 4 3 2 1 Ob 1 DETAIL K 1 A 0.1 Z (A2) (A1) SEE DETAIL K METAL LEAD BC212015LN and BC212013LN DIM MIN TYP MAX A 0.6 0.65 A1 0.22 REF 0.32 b 0.15 D 0.37 0.08 Z 6x6x0.6mm LGA NOTES 1 A2 Z SEATING PLANE PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF PACKAGE. 0.42 0.25 6 BSC E 6 BSC e 0.5 BSC D1 5 BSC E1 5 BSC LGA 96 BALLS 6X6X0.6mm (JEDEC MO-222) UNIT MM Figure 11.2: BlueCore2-External LGA Package Dimensions BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 83 of 100 _aiEceETMOJbniEea~a Product Data Sheet F 10X e Package Dimensions 11.3 10 x 10 LFBGA Package Top View Bottom View D PIN 1 CORNER PIN A1 A A B B C C D D E E F G G H H J J K K L L 1 2 3 4 5 6 7 8 9 10 11 11 10 9 8 7 6 5 4 3 2 1 Ob 1 DETAIL K 3 0.1 Z (A3) A (A2) SEE DETAIL K A1 Z 2 SEATING PLANE BC212015BN DIM MIN MAX A --- 1.4 A1 0.3 0.4 0.8 REF A3 b D 1 DIMENSION b IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER PARALLEL TO DATUM PLANE Z. 2 DATUM Z IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS. 3 PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF PACKAGE. 0.45 0.35 10x10x1.4mm LFBGA NOTES 0.26 REF A2 0.08 Z 10 BSC E 10 BSC e 0.8 BSC D1 8 BSC E1 8 BSC LFBGA 96 BALLS 10X10X1.4mm (JEDEC MO-210) UNIT MM Figure 11.3: BlueCore2-External LFBGA Package Dimensions BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 84 of 100 _aiEceETMOJbniEea~a Product Data Sheet E1 E F 10X e Solder Profiles 12 Solder Profiles The soldering profile depends on various parameters necessitating a set up for each application. The data here is given only for guidance on solder re-flow. There are four zones: Preheat Zone: This zone raises the temperature at a controlled rate, typically 1-2.5C/s. 2. Equilibrium Zone: This zone brings the board to a uniform temperature and also activates the flux. The duration in this zone (typically two to three minutes) will need to be adjusted to optimise the out gassing of the flux. 3. Reflow Zone: The peak temperature should be high enough to achieve good wetting but not so high as to cause component discoloration or damage. Excessive soldering time can lead to intermetallic growth which can result in a brittle joint. 4. Cooling Zone: The cooling rate should be fast, to keep the solder grains small which will give a longer lasting joint. Typical rates will be 2-5C/s. 12.1 Solder Re-flow Profile for Devices with Tin/Lead Solder Balls Composition of the solder ball: Sn 62%, Pb 36.0%, Ag 2.0% L e a d e d R e flo w S o ld e r P ro file 1 250 200 Temperature (C) 150 100 50 0 0 50 100 150 200 250 300 350 400 T im e (s ) Figure 12.1: Typical Re-flow Solder Profile Key features of the profile: Initial Ramp = 1-2.5C/sec to 125C25C equilibrium Equilibrium time = 60 to 120 seconds Ramp to Maximum temperature (210C to 220C) = 3C/sec max. Time above liquidus (183C): 45 to 90 seconds Device absolute maximum re-flow temperature 240C Devices will withstand the specified profile. Lead-free devices will withstand up to three reflows to a maximum temperature of 240C. BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 85 of 100 _aiEceETMOJbniEea~a Product Data Sheet 1. Solder Profiles 12.2 Solder Reflow Profile for Devices with Lead-Free Solder Balls Composition of the solder ball: Sn 95.5%, Ag 4.0%, Cu 0.5% Unleaded Reflow Solder Profile 2 300 250 _aiEceETMOJbniEea~a Product Data Sheet Temperature (C) 200 150 100 50 0 0 50 100 150 200 250 300 350 400 450 500 Time (s) Figure 12.2: Typical Lead-Free Re-flow Solder Profile Key features of the profile: Initial Ramp = 1-2.5C/sec to 175C25C equilibrium Equilibrium time = 60 to 180 seconds Ramp to Maximum temperature (250C) = 3C/sec max. Time above liquidus temperature (217C): 45-90 seconds Device absolute maximum reflow temperature: 260C Devices will withstand the specified profile. Lead-free devices will withstand up to 3 reflows to a maximum temperature of 260C. BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 86 of 100 Product Reliability Tests 13 Product Reliability Tests Die Test Conditions Specification Sample Size ESD JEDEC 3 120mA JEDEC 6 Early Life 125C 48 hours 800 Hot Life Test 125C 1000 hours 231 Test Conditions Specification Sample Size (125C 24 hours) 30C/60%RH 192 hours five re-flow simulation cycles 770 -65C to +150C 500 cycles 231 from Precon 121C at 100% RH 96 hours 231 from Precon 85C/85% RH 1000 hours 77 from Precon -55C to 125C 100 cycles 231 From Precon 150C 1000 hours 77 Package Moisture Sensitivity Precon JEDEC Level 3 Temperature Cycling AutoClave (Steam) Temperature Humidity Bias Thermal Shock High Temperature Storage BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 87 of 100 _aiEceETMOJbniEea~a Product Data Sheet Human Body Model Latch-up Product Reliability Tests for BlueCore Automotive 14 Product Reliability Tests for BlueCore Automotive The reliability tests in this section follow the tests outlined in the AEC-Q100 and were performed on BlueCore2-External in VFBGA 10 x 10mm 96IO (tin-lead solder balls). Samples are electrically tested at ambient temperature. This package qualification will (where moisture sensitivity preconditioning is required) use IPC/Jedec MSL3, i.e., the finished product is allowed a maximum exposure to a 30C/60%RH environment for 168 hours before mounting. Die Test Conditions ESD Specification Sample Size Result Human Body Model JEDEC 24 Pass Early Life 125C Vddmax 48 hours 2400 Pass Hot Life Test 125C Vddmax 1000 hours 90, 77, 77 Pass Package Test Conditions Specification Sample Size Result (125C 24 hours) 30C/60%RH 192 hours five re flow simulation cycles 783 Pass Moisture Sensitivity Precon JEDEC Level 3 Temperature Cycling Autoclave (Steam) Temperature Humidity Bias Thermal Shock High Temperature Storage Other Bond Shear Wire Pull Solder Ball Shear Visual Inspection and Dimensions BC212015-ds-001Pj -65/150C 500 cycles 231 from Precon Pass 121C/100%RH 96 hours 231 from Precon Pass 85C/85%RH Vddmax 1000 hours 231 from Precon Pass -55/125C 100 cycles 77 from Precon Pass 150C 1000 hours 77 Pass Sample Size Result Acid decapsulationof finished product 30 bonds Pass Acid decapsulationof finished product 60 wires from Preconand temperature cycling Pass Two reflow cycles 150 balls Pass n/a 30 devices Pass Test Conditions (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 88 of 100 _aiEceETMOJbniEea~a Product Data Sheet As part of CSR's automotive test program, customers will have access to the initial device reliability test report. They will also have access to a quarterly reliability test report update for automotive parts. Tape and Reel Information 15 Tape and Reel Information Tape and reel is in accordance with EIA-481-2. 15.1 Tape Orientation and Dimensions Figure 15.1 shows the general orientation of BlueCore2-External in the tape. _aiEceETMOJbniEea~a Product Data Sheet Figure 15.1: Tape and Reel Orientation BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 89 of 100 Tape and Reel Information Figure 15.2 outlines the dimensions of the tape used for 10 x 10 x 1.4mm LFBGA devices. The cover tape has a total peel strength of 0.1N to 1.3N. The direction of the pull should be opposite to the direction of the carrier tape such that the cover tape makes an angle of between 165 and 180 with the top of the carrier tape. The carrier and/or cover tape should be pulled with a velocity of 30010mm/minute during peeling. Maximum component rotation inside the cavity is 10 in accordance with EIA-481-2. The cavity pitch tolerance (dimension P1) is 0.1mm. The reel is made of high impact injection molded polystyrene. The carrier tape is made of polystyrene with carbon. The cover tape is made of antistatic polyester film and an antistatic heat activated adhesive coating. BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 90 of 100 _aiEceETMOJbniEea~a Product Data Sheet Figure 15.2: Tape Dimensions Tape and Reel Information 15.2 Reel Information Package Type Tape Width B Min C D Min N Min W1 W2 Max W3 10 x10 24mm 1.5mm 13.0+0.5/ -0.2mm 20.2mm 50mm 16.4+2.0/ -0.0mm 22.4mm 15.9mm Min LFBGA 19.4mm Max Table 15.1: Reel Dimensions 15.3 Dry Pack Information The primary packed product is dry packed in accordance with Joint IPC / JEDEC J-STD-033. All materials used in dry packing conform to EIA-541 and EIA-583. Figure 15.4 shows some illustrative views of reel dry packs. BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 91 of 100 _aiEceETMOJbniEea~a Product Data Sheet Figure 15.3: Reel Dimensions Tape and Reel Information Humidity Indicator Card 10% ~ 30% Desiccant: two units bags each containing 2 units of desiccant Cube of pink foam to protect tape from crushing Desiccant and Humidity Indicator Card are put on the bottom side of the reel. Caution Label is printed on dry pack bag. Dry pack bag. Figure 15.4: Tape and Reel Packaging Devices shipped in dry-pack bags will withstand storage in normal environmental conditions, such as 30C and 70% RH for a minimum of one year as long as the dry-pack bag has not become punctured. Humidity indicators inside the dry-pack bag will confirm this when the bag is opened. 15.3.1 Baking Conditions Devices may, if necessary, be re-baked at 125C for 24 hours. If devices are still on the reel, which cannot withstand such high temperatures, they should be baked at 45C for 192 hours at relative humidity less than 5%. Solder wettability of parts will be unaffected by three such bakes. BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 92 of 100 _aiEceETMOJbniEea~a Product Data Sheet Position of label on reel. Tape and Reel Information 15.3.2 Product Information Figure 15.5 shows example product information labels. XX XXXX XX-XXX BLUECORE XXXX PACKAGE DEVICE/TYPE QUANTITY 0 3 4 2 3 4 2 0 XXXX-XXXXX 23 4 2 3 4 2 20 LOT No. 0 3 4 2 3 4 2 0 23 4 3 4 2 3 4 2 0 23 4 2 3 4 2 2 XXXXXX.XX 2 3 4 2 20 3 4 2 3 4 2 0 23 4 2 3 4 2 _aiEceETMOJbniEea~a Product Data Sheet BOX Id Qty 2 0 LOT No. 3 4 2 3 XXXX 4 2 0 23 4 2 3 4 2 Date 2 Qty 0 3 4 2 3 4 XXXX 2 0 23 4 2 3 4 2 2 Date (1P) MPN: XXXXXXXXXXXXXXXX 3 2 1 5 6 4 + 6 (1T) WF LOT: XXXXXXXXXXXXX 3 2 1 5 6 4 + 6 (9D) DTE: XXXXX MS Level: 3 3 2 1 5 6 4 + 6 (Q) QTY: XXXX 3 2 1 5 6 4 + 6 Hours: 168 Hours Sealed: Date Figure 15.5: Product Information Labels A product information label is placed on each reel, primary package and shipment package. BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 93 of 100 Ordering Information 16 Ordering Information BlueCore2-External Standard Packaging Options Firmware: HCI/on-chip RFCOMM Package Interface Version Order Number Size Shipment Method 96-ball LFBGA 10 x 10 x1.4mm Tape and reel BC212015BBN-E4 Tape and reel BC212015BDN-E4 (Declared as obsolete from 31st December 2006) 96-ball VFBGA UART and USB 8 x 8 x 1mm 96-ball VFBGA 6 x 6 x 1mm Tape and reel BC212015BEN-E4 (Declared as obsolete from 31st December 2006) 96-ball VFBGA Lead Free 6 x 6 x 1mm Tape and reel BC212015BRN-E4 96-ball VFBGA Lead Free 8 x 8 x 1mm Tape and reel BC212015BQN-E4 96-ball LGA 6 x 6 x 0.65mm Tape and reel BC212015BLN-E4 Table 16.1: BlueCore2-External Standard Package Options BlueCore2-External is available with additional software options, as Table 16.2 shows. To order one of these versions attach the appropriate order code to the main packaging order number, e.g., BC212015BDN-E4-0112. Additional Software Options Product Family Description Order Code BlueCore2-Ext-PC Bluetooth for Windows v1.2 English -0112 BlueCore2-Ext-Embedded Bluetooth Embedded v1.2 -4012 BlueCore2-Ext-BCHS(1) BlueCore Host Software -8010 Table 16.2: Additional Software Options Note: (1) Only available for UART interface versions. Packaging Option 2kpcs Taped and Reeled BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 94 of 100 _aiEceETMOJbniEea~a Product Data Sheet Type Contact Information 17 Contact Information CSR Denmark CSR Japan Novi Science Park 9F Kojimachi KS Square 5-3-3, Milton Road Niels Jernes Vej 10 Kojimachi, Chiyoda-ku, Cambridge, CB4 0WH 9220 Aalborg East Tokyo 102-0083 United Kingdom Denmark Japan Tel: +44 (0) 1223 692 000 Tel: +45 72 200 380 Tel: +81 3 5276 2911 Fax: +44 (0) 1223 692 001 Fax: +45 96 354 599 Fax: +81 3 5276 2915 e-mail: sales@csr.com e-mail: sales@csr.com e-mail: sales@csr.com CSR Korea CSR Taiwan CSR U.S. Rm. 1111 Keumgang Venturetel, #1108 Beesan-dong, Rm 6A, 6F, No. 118, 1651 N. Collins Blvd. Hsing Shan Road Suite 210 Dong An-ku, Anyang-city, Nei hu, Taipei Richardson Kyunggi-do 431-050, Taiwan, R.O.C. TX75080 Korea Tel: +886-02-77215588 Tel: +1 (972) 238 2300 Tel: +82 31 389 0541 Fax: +886-02-77215589 Fax: +1 (972) 231 1440 Fax : +82 31 389 0545 e-mail: sales@csr.com e-mail: sales@csr.com e-mail: sales@csr.com To contact a CSR representative, go to http://www.csr.com/contacts.htm BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 95 of 100 _aiEceETMOJbniEea~a Product Data Sheet CSR UK Cambridge Science Park Document References 18 Document References Document References Version Specification of the Bluetooth system v1.1, 22 February 2001 and v1.2, 05 November 2003 Universal Serial Bus Specification v1.1, 23 September 1998 _aiEceETMOJbniEea~a Product Data Sheet BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 96 of 100 Acronyms and Definitions Acronyms and Definitions Term: Definition: Asynchronous Connection-Less. A Bluetooth data packet AC Alternating Current ADC Analogue to Digital Converter AGC Automatic Gain Control A-law Audio encoding standard API Application Programming Interface ASIC Application Specific Integrated Circuit BCSP BlueCoreTM Serial Protocol BER Bit Error Rate. Used to measure the quality of a link BGA Ball Grid Array BIST Built-In Self-Test BlueCoreTM Group term for CSR's range of Bluetooth wireless technology chips Bluetooth(R) Set of technologies providing audio and data transfer over short-range radio connections BOM Bill of Materials. Component part list and costing for a product BMC Burst Mode Controller BSC Basic. Represents theoretical exact dimension or dimension target C/I Carrier Over Interferer CFI Common Flash Interface CMOS Complementary Metal Oxide Semiconductor CODEC Coder Decoder CPU Central Processing Unit CQDDR Channel Quality Driven Data Rate CSB Chip Select CSR Cambridge Silicon Radio CTS Clear to Send CVSD Continuous Variable Slope Delta Modulation DAC Digital to Analogue Converter dBm Decibels relative to 1mW DC Direct Current DFU Device Firmware Upgrade FSK Frequency Shift Keying GCI General Circuit Interface. Standard synchronous 2B+D ISDN timing interface GSM Global System for Mobile communications HCI Host Controller Interface Host Application's microcontroller Host Controller Bluetooth integrated chip HV Header Value IQ Modulation In-Phase and Quadrature Modulation IAC Inquiry Access Code IF Intermediate Frequency ISDN Integrated Services Digital Network BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 97 of 100 _aiEceETMOJbniEea~a Product Data Sheet ACL Acronyms and Definitions ISM Industrial, Scientific and Medical ksamples/s kilosamples per second L2CAP Logical Link Control and Adaptation Protocol (protocol layer) LC Link Controller Liquid Crystal Display LGA Land Grid Array LNA Low Noise Amplifier LSB Least-Significant Bit -law Encoding standard MMU Memory Management Unit MISO Master In Serial Out OHCI Open Host Controller Interface PA Power Amplifier PCB Printed Circuit Board PCM Pulse Code Modulation. Refers to digital voice data PDA Personal Digital Assistant Persistent Store Storage of BlueCore's configuration values in non-volatile memory PIO Parallel Input Output PLL Phase Lock Loop ppm parts per million PS Key Persistent Store Key RAM Random Access Memory REB Not Read enable REF Reference. Represents dimension for reference use only. RF Radio Frequency RFCOMM Protocol layer providing serial port emulation over L2CAP RISC Reduced Instruction Set Computer rms root mean squared ROM Read Only Memory RSSI Receive Signal Strength Indication RTS Ready To Send RX Receive or Receiver SCO Synchronous Connection-Oriented. Voice oriented Bluetooth packet SD Secure Digital SDK Software Development Kit SDP Service Discovery Protocol SIG Special Interest Group SMS Short Message Service SOC System On Chip SPI Serial Peripheral Interface SPP Serial Port Profile SRAM Static Random Access Memory SS Supplementary Services SSI Signal Strength Indication SSL Secure Sockets Layer BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information _aiEceETMOJbniEea~a Product Data Sheet LCD Page 98 of 100 Acronyms and Definitions SUT System Under Test SW Software SWAP Shared Wireless Access Protocol TA Terminal Adaptor TAE Terminal Adaptor Equipment TBD To Be Defined TX Transmit or Transmitter UART Universal Asynchronous Receiver Transmitter Universal Serial Bus or Upper Side Band (depending on context) VCO Voltage Controlled Oscillator VFBGA Very Fine Ball Grid Array VM Virtual Machine W-CDMA Wideband Code Division Multiple Access WEB Write Enable BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information _aiEceETMOJbniEea~a Product Data Sheet USB Page 99 of 100 Record of Changes Record of Changes Revision Reason for Change 5 March 2002 BC212015-ds-001a Original publication of this document 5 May 2002 BC212015-ds-001b Additions made to RF characteristics 18 June 2002 BC212015-ds-001c Additions made to RF characteristics and 10 x 10 packaging information added December 2002 BC212015-ds-001d Additional electrical and RF data added March 2003 BC212015-ds-001e Changes made to 10 x 10 package order code February 2004 BC212015-ds-001f Amendment to specification v1.1 and v1.2 compliant statement. February 2004 BC212015-ds-001g Removed incorrectly added CSP references. 27 July 2004 BC212015-ds-001h Added reference to BC212015BQN product; updated section 9.7, Serial Peripheral Interface; updated section 17, Contact Information. 24 August 2004 BC212015-ds-001Pi Added section 14, Product Reliability Tests for BlueCore Automotive; corrected formatting errors. 14 August 2006 BC212015-ds-001Pj Notice of obsolescence for leaded parts added to ordering information in compliance with RoHS introduction. qj _aiEceE OJbniEea~a= = Product Data Sheet BC212015-ds-001Pj August 2006 BC212015-ds-001Pj (c) Cambridge Silicon Radio Limited 2002-2006 This material is subject to the terms of CSR's non-disclosure agreement. Production Information Page 100 of 100 _aiEceETMOJbniEea~a Product Data Sheet Date